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Modeling to inform transitions to sustainability:
Four challenges

Fueling volatility
The falling price of crude oil (WTI) has brought it back i

(a) Annual anthropogenic CO, emissions
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Notion “VUCA” was introduced by the US Army College to describe the world as resulting from the end of the
& | Cold War

ITASA



VUCA-world challenges require VUCA-powerful
methods to derive effective and efficient
solutions
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Albert Einstein, 1921
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Optimization problem under chance constraints
— general formulation

Minimize f(x)

Prob[g;(x,w) <0] > ¢q; i=1i,..,m, w€Q

x is a vector of first-stage (strategic) decision variables

f is an objective function

h; are functions representing deterministic constraints

g; are functions defining probabilistic chance constraints

q; are specified target reliabilities

w is a vector of random variables that represent uncertain parameters
() is a set of all possible values of w



Application to a Water-Energy-Food nexus
management problem



Application: Water-Energy-Food nexus

Minimize f(x)

Prob[g;(x,w) <0] > ¢q; i=1i,..,m, w€Q

Focus: A region consisting of sub-regions, each producing coal and growing
crops — both require water which is scarce. Demands for coal and crops are
given

Objective function and constraints are linear functions of decision variables
Major decision variables are the amounts of production of coal by different
technologies and the amounts of crops produced in each sub-region -- total # of
sub-regions X number of crops X number of coal technologies variables
Additional decision variables: Amounts of coal and crops transported across
regions

Deterministic constraints describe food and energy security

Probabilistic constraints describe the availability of water

Uncertainty is the water supply



Solution method — equivalent optimization
problem with a penalty term

Minimize E[F (x, w)]
FOow) =00 = ) ai(x0)
i=1

yi(x, w) = min{0, —g; (x, w)}

« |If the water constraint is satisfied (g_i<0), the penalty term is zero; if it is not
satisfied, the unsatisfied water requirement is penalized
« Target probabilities q_i translate into penalty coefficients alpha_i!!!
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Source: Ermoliev and Wets (1988, pp. 59-61)



Interpretation: two stages

» First stage — “strategic” decisions — taken and implemented before the
uncertainty is realized — e.g., installment of water saving technologies

Minimize E[F (x, w)]

Fiow) = f0) = ) ayix,o)
i=1

« Second stage — “adaptive” decisions — taken and implemented after the
uncertainty is realized — e.g., “importation” of water from outside the region or
reduction of the household consumption

yi(x, w) = min{0, —g; (x, w)}
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Practical approach to compute the expected
value

m S
Feo@) = f) = ) a; ) pemin{0, —g; (x,w5)}
=1 s=1

« The expected value of the penalty term is replaced by the sample mean
« Sample is based on observations in the past and/or predictions for future

Source: Ermoliev and Wets (1988)
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Model outline

System under consideration
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Model structure

Minimize system cost
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o Natural resources supply o Natural resources supply

e Land supply """ e Land supply

o Energy production capacity o Energy production capacity

Solution and Application

Desired probability of
self-sufficiency

Penalty

Actual water supplyl

. Frist-stage solution
's Water allocation

/» Land allocation

}- Energy allocation

l» Agriculture allocation

}o Energy technology

}o Water saving technology

Second-stage solution
o Water importing

Source (here and in the next slides): Gao et al (2021)



Case study area: Shanxi Province, China

Water resource (million cu.m)
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Water, energy and agriculture across
Shanxi prefecture
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SOURCE: China Water Risk (based on 2012 China Statistical Yearbook & CWR Analysis)
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Reliability-penalty relation

—— Deterministic solution
1.0 4 —e— Stochastic solution
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Reliability levels under different penalties, and
comparison of the stochastic and deterministic solutions
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Solution costs

5359 —a—Total
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Total, first-stage, and the expected value of second-stage costs of the
stochastic solution at different penalty levels. The numbers 742, 962, and 1412
represent optimal volumes of water storage, in million m3. Percentages in
parenthesis indicate the reliability levels that can be achieved at the
corresponding penalty level due to the deployment of the indicated
technologies in the first stage.
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Water saving solutions

6540 ] Water withdrawal by agriculture
6520 4 —®— Water storage

6500 -
6480
6460 -
6440 -

on
=)
=
=
(=)
\
A\

Penalty cost (RMB)

Amount of water storage at the second stage and water withdrawal by crops
throughout the entire province at different penalty levels. At penalty levels lower
than 12 RMB per ton, water storage is zero. Percentages in parenthesis
indicate the reliability levels that can be achieved at the corresponding penalty
level by establishing water storage at the indicated capacity in the first stage.
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Optimal allocation of production

unit: thousands of tonnes

Optimal crop production in each sub-region under 11 RMB per
ton of water penalty (left part of the figure) and 12 RMB per ton
of water penalty (right part of the figure).
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What is the benefit of information?

VSS = EF(xE®, w) — EF (x*, w)

W

| v EVPI = EF (x*, w) — Ef (x®, w)

N
1

x*is the first-stage solution in the two-
stage stochastic optimization problem

(98]
1

x® is the (first-stage) solution in the
deterministic optimization problem

[N}
1

Minimize f(x) —
i=1 a; min{0, — g; (x, w)}

h](X)ZO j:].,...,k

Relative to the total cost of the stochastic solution (%)
1

o
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The expected value of perfect information (EVPI) and the value of the
stochastic solution (VSS) relative to the total cost of the stochastic
solution under different penalties.



Robustness of the stochastic solution

billion RMB

® (Cost of stochastic solution
B Cost of deterministic solution
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For each water availability scenario, the total costs of the deterministic and
stochastic solutions for a penalty of 30 RMB per ton of water.
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Application to Pollution Control in Surface
Waters



Pollution control: Eutrophication in surface waters

Baltic Sea
Source: The

-

Guardian, 2020
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Lake Erie, North America
Source: New York Times, 2017



Fertilizers and pollution control

Y3
h-1

)

land fertilizer cover crops |
allocation application adoption path |
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Phosphorus in soil

Environmental regulations

uncertainty

Phosphorus in ground water

= Source: Wildemeersch et al (2019)



Chance constraint problem

« Dynamics of the Phosphorus cycle taken into account

» Expected profit is maximized over Phosphorus application, crop allocation
and cover crops

* Uncertain emissions into the lake need to be limited with high reliability

| ” Profit function as

- t N a function of crop
50, F ;B (t)E [7% & t),@(t),w)} yields

1

s.t. state equations
IP) [ES&(t’ w) S nsa] Z 1 _ €8a
]P) [ESS(t’ w) S nSS] Z 1 o 688

Phosphorus
emissions per unit
area
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Reformulation as two-stage problem with recourse

Fertilizer application, crop allocation, and farming practices (strategic
decisions) need to be chosen wisely to avoid paying too large penalties
(adaptive decisions)

Profit Environmental cost

e i Ik (IZ 9;(t)E {m <9¢(t), F;(1), w)}

s.t. state equations

(E[maX{O, E*?(t,w) — n°*} + max{0, E*(t,w) — nss}] )l)




Relationship between risk level and corresponding cost
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Robust solution provides significant tighter guidelines
for fertilizer application

cause of algal blooms
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il 16% gap |
_ ﬁ _ - Fertilizer application based on
mean emission rates has
historically led to harmful algal
blooms

average emission rates | |

m. . = - Robust fertilizer application
2020 2030 2040 2050 YeZaO:SO 2070 2080 2090 2100 rate 16% Iower than
application based on mean
emission rate

P fertilizer application rate over time
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Application to Financing Mechanisms for
Sustainable Food Security



Risk management for sustainable food security

« Population is growing very quickly in West-
Africa

* Farmers in the region are faced with extreme
weather events

« Stable incomes are necessary to avoid
poverty traps and allow for investment in
efficient farming technologies.

» Can local food production keep up with
population growth?

» Is it possible to provide more stable incomes

to local farmers by means of a catastrophe
fund?

« How much risk pooling needs to occur to
ensure food security and/or solvency of the
catastrophe fund?
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Modeling food security and financial risk transfer (i)

« Establish dependence structure of crop yields
in West-Africa

» Define crop yield projections for the coming 25

years
- Uncertainty: random vector of yields over
different clusters
- Non-stationary process: expected yield is
varying with time
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Modeli

ling food security and financial risk transfer (ii)

« SO model that

min

x(t)

S.t.

=D

Minimizes cultivation cost
Food security needs to be guaranteed with given reliability level
Catastrophe fund needs to stay solvent after catastrophic event

Crop choice and land allocation (strategic decisions) need to be chosen
wisely to avoid importing food at higher price and taking loan (adaptive
decisions)

Cultivation cost
i 77?.- e e g s
| land allocation
i Z 3 TN Rt e
' random yield
P[(x, Y) > 0} > Qg ch:gear;feyrc;ogzgzitrg m éh:vgiiaStrOphe

Capital in fund after catastrophe



Managing food security and insolvency risk

We consider different population scenarios and analyze the effects on

allocated land
Food security probability at 95% and solvency probability at 85%

Food security constraint and solvency constraint not active at the same time

Maize substituted by rice once limit of arable land is reached
Currently, arable land is sufficient to meet food demand with high

probability, but population growth is a critical factor for sustainable food

security in West Africa.

Crop area in [ha]
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Government interventions to finance catastrophe fund

We consider three policy levers that can be used by governments to
manage food security and stabilize incomes

Tax rate affects time needed to build up the fund

Share of guaranteed income requires large initial overproduction
Increased risk level reduces the expected losses to be refunded to farmers
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Spatial correlation and risk pooling

We quantify the effect of risk pooling by evaluating the total amount of food
imports and the total debt that needs to be sustained for different levels of
cooperation.

Collaboration between different clusters improves the feasibility to achieve
food security and solvency of the financing mechanism.

Limited levels of cooperation result in large benefits for the food security, and
cooperation over larger areas is necessary to improve the solvency objective.

Development depending on colaboration of clusters
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