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WHAT IS “DUALITY THEORY”?

Kuhn (STAM-AMS Proc., Vol. 9, 1976):
“A Duality Theory is made of the following elements:

(a) A pair of optimization problems, one a
minimization problem (problem (P)) and the other
a maximization problem (program (D)) based on

the same data.
(b) Weak duality holds: min(P) > max(D).

(c) Necessary and sufficient conditions for optimality
of a feasible pair is the equality of the

corresponding objective function.”

My addition

(d) A computable (tractable) relation between the
optimal solutions of (P) and (D).

(e) Relation between: primal feasibility and dual

boundedness and dual attainability.



LAGRANGIAN DUALITY

(P) | nf {f(2)lgi(x) <0, i=1,....m}

f, g; convex

Lagrangian: L(z,y) = f(z) + Y0, yigi(x)

Dual objective function:

gly) = irﬁ{; L(z,y) a concave function
r€eIR™
domg = {y|g(y) > —oc}

(D) | sup {9(y) [y €domg, y=0}
yeR™

Duality Theorem If (P) satisfies

32:9;(x) <0Vi=1,...,m (Slater condition)

then
inf(P) = max(D)

Extensions to oco-dimensional spaces



Fenchel Duality

We define the primal problem:

(P)  inf{/f(x)—g(x)| 2 € dom(f) " dom(g)}

The Fenchel dual of (P) is given by:

(D) sup{g«(y)—f"(y) |y € dom(g,) Ndom(f™)}.

Now the Fenchel duality theorem:

Theorem If ri dom(f)N ri dom(g) # 0, then the optimal
values of (P) and (D) are equal and the maximal value of

(D) is attained.

Recall:

f*(y) =suwply'x — f(z)) g.(y) = inf(y' > — g())

X



CONIC DUALITY

K = closed convex pointed cone, int K # ()

. T _ _
(P) xlergn{c x| Az —be K} A=mxn

(P) is strictly feasible if 3% : AT —b € int K

The conic-dual of (P) is
(D) sup {bTy | Aty =c¢, y € K*}
yelR™
K., is the dual cone of K
K*:{y|yTxZO, VxEK}
(D) is strictly feasible if 37 € int K, : ATy = c

Examples of dual cones

K=R', K,=K
K:Ln:{(azl,...,xn_l,xn)\xnz\/x%+---+x%_1},
K,=K
K=8S"={AcRV"|A" =4, A0}, K,=K
K={z|Az>0} K,={A"y|y>0}




SDP DUALITY

(P)  min {(c,z) | Az — B = 0}

Ar =21A1+ -+ 2,4, A:IR"—S™

A;, BeS™,
Dual of (P) : max {(B,Y) | A"Y =¢, Y =0}
E m
(B,Y) = Trace(BY)
A* 8™ - R", A*Y = (Te(YAy),...,Tr(YA,))"

—

(D)| max {Tr(BY) | Tx(YA;) =¢;, i=1,...,n, Y =0}

YeSm




CONIC DUALITY THEOREM

(P) inf{clz|Az—-be K}
(D) sup{d'y | Ay =c¢, y€ K.}

1. Dual of (D) = (P)

2. Weak duality: inf(P) > sup(D)

3. Strong duality: If one of the (P) (D) is strictly
feasible and bounded, then its dual is solvable and

inf(P) = sup(D). If both are strictly feasible, then
min(P) = max(D).

4. Complementarity: If (P) or (D) is strictly feasible
and bounded, then a feasible pair x,y is an optimal

pair, if and only if

y! (Ax — b) =0



EXAMPLE: A NONCONVEX
QUADRATIC PROBLEM

1
A min { —z7 'z Ty <1
(A) a;elan{QZ Qz+c z: z'z
(Q = n X n symmetric indefinite
eigenvalues A <A <o <A, (A1 <0)
orthonormal e-vectors w1 <wug <---<u,

A =diag(A1,...,\n); P = (u1,...,up)

change of variables: z = Pz and using Q = P' AP,
PTp =T,

problem (A) converted to:

1
(P) mlgl {5 SNiz?+ el :(;Txgl}, ¢ = Pc.
zelR"™

Dual of (P) via lagrangian duality:

1 c7
- [ : . > )y
(D) III}?%{{ 2(2 )\i+u—|—,u> Ai >0, Vz}

a concave prograin

computing the dual of the dual.
10



Rewriting (D

2

_\

(D)

\

) as

1 -2
2 Yi

yelR™, uelR

subject to
—Yit+Ai+p=0

< multiplier %

The (lagrangian) dual of (D) is

(DD)

(DD) is,

What is

min {%Z)\iui — E\EZ\\//LT@}

subject to

of course, a Convex prograrl.

the relation between (P) and (DD)?

(P)
E:c% <1

11



Theorem 1 The nonconvex program (P) is equivalent

to the convex program (DD).
{u; : 1=1,...,n} solves (DD) iff
{:I:T: = —(sign ¢;)y/ul, i=1,... ,n} solves (P).

Proof:
min(P) < max(D) = min(DD)

but xf = —(sign ¢;)/u; is feasible to (P) and objective
function of (P) evaluated at x* is equal to min(DD).

12



EXAMPLE: STATISTICAL
INFORMATION THEORY

random variable (nondegenerate)
support of X

density of X

class of density functions with support B
which are absolutely contin. w.r.t.

a nonnegative measure dt

A;(t) — summable functions

(P) inf {f(f,fx>= [ 1010 L0}

feD
S.t.

fx (1)

[ f®)A;(t)dt=6;, i=1,...,m

oo-dimensional problem*

Fundamental Problem in Statistical Information

Theory Application in Traffic Engineering, Accounting,

Marketing, Signal Processing, Statistics ...

*D € LP(Q, F, P) linear space of measurable real-valued func-
tion f: Q = R, ||f|lp < oo

1£llp = (Jo [F@)PdP@)) /P, (1 < p < o0)

13



The Dual Problem

(D)  sup {Eﬁim—log/ fX(t)ezA"’(t)mdt}
B

TelR™

Unconstrained! Finite Dimensional!

Duality Theorem

(i) inf(P
(ii

(i

) = sup(D)
inf(P) = min(P)

sup(D) = max(D) iff (P) is superconsistent

)

)

)

(iv) sup(D) < oo & (P) is feasible
=N

(v) If m* solves (D), then

fX (t)eEA"' (t)m}

f*(t) — fB fX(t)GZAi(t)W;‘ dt

14



* If fx(t) is not a density function, but just a
positive summable function, then dual problem:

sup {E&ﬂri—/ fX(t)ezAi(t)m_ldt}
TelR™ B

Examples

1) inf {/ f(t)log f(t)dt : /f(t)dt = 1}

sol. frpy=d YT@ ast<h L roRM
0 otherwise

;22{/ f(t)log f(t)dt : /_Z t2 f(t)dt = 02}

1 2 o 2
sol. f*(t) = e % /20 NORMAL

B 2mo

f t)1
}213/ f(2) Og

/tf(t)dt — K/

sol. fr(t) = GAMMA

15



LIST OF P.D.F.’s DERIVED FROM THE
ABOVE DUALITY

DISCRETE R.V. CONTINUOUS R.V.
uniform Normal
geometric Laplace
binomial Generalized Cauchy
Poisson exponential
log Series gamma
Truncated Geometric beta
log normal

MULTIVARIATE R.V.

Multi Normal

Multi log Normal

Dirichlet

Multivariate Beta of 2nd kind

(Generalized) multivariate logistic

16



Fenchel Duality

We define the primal problem:

(P)  inf{/f(x)—g(x)| 2 € dom(f) " dom(g)}

The Fenchel dual of (P) is given by:

(D) sup{g«(y)—f"(y) |y € dom(g,) Ndom(f™)}.

Now the Fenchel duality theorem:

Theorem If ri dom(f)N ri dom(g) # 0, then the optimal
values of (P) and (D) are equal and the maximal value of

(D) is attained.

Recall:

f*(y) =suwply'x — f(z)) g.(y) = inf(y' > — g())

X



Indicator and Support Function

A special conjugate function is the support function, which

1s the conjugate of the indicator function.

The indicator function on the set S is defined as:

0 if reS
o(z]S) =

o0 otherwise.

Then the conjugate function of d(x|S),

6" (y|S) = sup {y'w — 6(x|S)} = supy' =,

reS

is the so-called support function of the set S.



The Essential Role of Duality in Robust Optimization

Consider the Robust Counterparts of an uncertain constraint
(RC) fla,2) <0, VaeU, fconcaveina
where

U = {a —ad"+AC|CeZC ]RL} , / aconvex uncertainty set
Theorem The vector x € IR" satisfies (RC) if and only if

x € IR" and v € IR™ satisfy the single inequality

(FRC) (a”) 46" (AT 0| Z)— fo(v,2) < 0.



(FRC) (a®)'v + 6*(AMv|Z) — fu(v,z) <0

we have that z is robust iff f(a,z) <0, VaeU,

or equivalently F'(z) < 0

Now, F(x):=max f(a,)

aclU

F(x) = max{f(a,z) — d(a|U)}.

acR™M
By Fenchel duality
F(z) = min{0"(v|U) = fulv,2)}, (1)

where f, is the concave conjugate w.r.t. f(-,x) and 0* is the

support function of U, i.e.:

§*(v|U)sup{a’v]a = ag + AC}
ez

= (a”)'v +supv’ AC
ez

= (a")'v +6*(ATw|2).
Putting things together in (1)
F(z) <0 <= min(a") v+ §(A"0]2) — f.(v,2) <0

which is just the inequality (FRC) in the theorem.



THE POWER OF DUALITY
IN STRUCTURAL DESIGN
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russ Topology Design

[¢] [¢] [¢] [¢] [¢] [¢]
[¢] [¢] [¢] [¢] [¢] [¢]
[¢] [¢] [¢] [¢] [¢] [¢]
[¢] [¢] [¢] [¢] [¢] [¢]
[¢] [¢] [¢] [¢] [¢] v
[¢] [¢] [¢] [¢] [¢] [¢]
[¢] [¢] [¢] [¢] [¢] [¢]
O O O O O O







The simplest TTD problem is

. L 1 T .
Compliance = 5 /*x — min

s.t.

1=1

A\ 7

¢
I
S

e Data:

— b; € R™, n — # of nodal degrees of freedom
(for a 10 x 10 x 10 ground structure, n ~ 3,000)

— m — # of tentative bars (for 10 x 10 x 10
ground structure, m ~ 500, 000)

e Design variables: t € R™, x € R"



viultl-noaa 110

. T
1111 IMax I
teR™,xq,...,.xx €ER™ 71=1,..., k{fj j}

subject to
A(t)a:j:fj ]Zl,,k‘
Stiti=v, t>0

(P1) <

\

Observation 1 Let A > 0, then

win{ {7z | Ax = f} = max{2fTe— 2" Az} (= fTAL)
Conclusion

(P1) & min max {%@X@ff E A“W}
£>0 ’

Observation 2

{maxozj — maX{Z)\jaj | Z)\j =1,\> O}}

J

Conclusion

(P1) & min max {Z Aj maX(ijTZUj - %TA(t)xj)}
dit;=v E)\jzl L j
t20  X\;>0

Jnin sup max {3277 (M) — A7 (o) TA(E) (Ajz;) }
1= j:1 J

t>0
= )\j >0 4



Change of variables Ajx; — x;

(P1) & min sup {Z 2f w; — A;la;fA(t):Uj}
t20  A>0,Z);=1
2t =0 {z;}

compact linear in ¢
convex concave in

)\1,...,)\k,ib1,...,a¢k

(f(Otl, 042) = a%/ag is convex in R X R+)

MINMAX = MAX MIN

(P1) & (dual sense) [xjA(t)a:j = thxjrijj}

sup min {Z 2ijxj — th()\j_laZJTijj)}
A>0,20=1 _t=20
{a;y =

y v o if i = arg maxj{)\j_lazfijj}
Z 0  otherwise

(P1) < sup (2 Z ff:z:j — vmax{Aglxjijj})
A>0,5A;=1 J
{z;}

summarizing



Multi-Load TTD

min maxk{ffzﬁj}

xj,t 5=1,...,
S.t.
m
E tiAZ'CIZ] — fj
i=1
m
t@' =7
1=1
ti — O) v = 17 . y T
e R j=1,...,k
k K
. - CE?AZ'ZUJ
min E J; i +v- max g
TjyeorTh . 1=1,....,m - )‘j
rerk =1 7=1
S.t.




CONVEX PROGRAM

dual var. j ALy .
<
t;f = g ( )\j ) <T V1

a conic quadratic constraint




Forces and fix points

© ©) (O) ©)
(@] (@] (@] (@)
(@] (@] (@] (@]
©) ©) ©) ©)
(@] (@] (@] (@]
(@] + (@] (@]
I I I I
2 3 4 5



Starting solution




iteration number 10
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iteration number 400
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ANALYSIS BASED ON I1I (Conic Optimization)

teT 2

min S fTA(t)"Lf

min % T
¢> tGT,T

FTAR) ' f <7

Schur Complement:

A(t) =St A A= bib!
T={t>0, Xt; <w}

B CT
D1, =0 & B—-CD 10T =0
C D

min % T
t,TER

SEMIDEFINITE PROGRAM
(SDP)



e In the case of Shape design, the advantages of the

dual setting also can be quite significant.

Consider, e.g., the obstacle-free planar Shape
problem with rectangular cells and with simple
bounds.

e The primal problem is:

T — min
2T —fr
n 4f£ T i 07 b= 1,
_fﬁ Zi:l Zszl bwt@bw
ti i 07 (I 17

29



e The dual problem is

k
—QZfépvg+w7—>min

=1
( a1 ”U’{bil \
a1 vclrbis
>_— 07 II/ — 17 7n7
Qg vgbil
T
Qg v bis
\ bavl---bgsvl bavk---bfsvk ")/13 )

k
2204@:1.
/=1

lag, v € R, vy € R™]

e LE.g.. for planar shape with 14 x 14 cells and 3 loads:

Setting | Design dimension | Effort of analyzing LMI’s
at a point, a.o.

(Pr) 1,177 37,309,230

(D1) 1,264 71,608
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Optimization in Flight...



Application Example: Free Material Optimization

& FMO is a methodology for design of mechanical structures. In FMO,
one seeks how to distribute a given amount of elastic material over a
given domain in order to get a structure capable to withstand best of
all a given collection of external loads. It is assumed that

e the mechanical properties of the material (its rigidity tensor)
may vary, in an arbitrary fashion, from point to point;

e the rigidity of a construction w.r.t. a given external load is
measured by the compliance — potential energy capacitated by

the construction at the static equilibrium corresponding to the
load;

& The goal is, given the weight of the construction, to minimize its
largest, over a given set of loading scenarios, compliance.

& Usually it is technically impossible or too expensive to implement an
FMO design “as it is”. The role of FMO is in providing a good guess
for the structure of the would-be construction. After the structure
is guessed, the construction is designed from traditional materials via
standard engineering techniques.




% With Finite Element discretization, the Multi-Load FMO problem
is
( . ]
min ) max fESTH ) fo: ts = 0, = Tr(ty) < 1} (FMO)
| E=Lyeeny ? J

where

eti,i=1,.. N, are symmetric 3x3 (in 2D) or 6x6 (in 3D) variable
matrices (rigidity tensors of the material in Finite Element cells),
o fy, L = 1,..., K, are M-dimensional data vectors representing
loading scenarios,

o S(t) = Zbi;tz-bz-s is the M x M stiffness matrix of the construction.
.5

]

& In a realistic 2D FMO problem,

e the number N of Finite Element cells is tens of thousands
= design dimension of (FMO) is of order of 50,000 — 200,000
e the size M of the stiffness matrix is ~ 2N

= it is a nontrivial problem just to compute the objective!



Design of stiffeners: MOPED & MBB-LAGRANGE




Design of stiffeners: MOPED & MBB-LAGRANGE




Reference design

FMO based design
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= - [ w I wm -3 -~ @

Wing element for Aerobus A380 Implementation, Erlangen
FMO design by NERML University and European Aero
80 iterations Defence and Space Co.
n = 39,780, N =6,630, M =13,84

Free Material Optimization: element of aircraft wing
FMO allowed for 17% reduction in element’s weight



Based on computational results for maximum stiffness and quite a
bit of engineering interpretation a new type of structure was
devised for the ribs which gave a weight benefit against traditional
and competitive honeycomb/ composite designs (up to 40% !)

A total weight saving of more than 500 kg per wing was obtained
by optimizing the ribs in the area shown. These are now — since
April 27, 2005 - the first topology optimized parts in flight.






Recovery of signals

from noisy outputs



'The Estimation Problem

y=Hzx+w

Given y, find an estimator z, which is as “close” as

possible to z.

w random vector

E(w) =0, cov(w)=C positive definite

CLASSICAL METHODS are based on minimizing
data error ||y — Hz||



CLASSICAL APPROACH (Gauss,. . .)

Closeness measured by (standardized) data error
G2 (y — HE)|ls
Least Squares Estimator

convex

rps = arg mxm | (y z)|2 optimization

SOLUTION (H full column rank)

trs = (H'CIH)"1HTC™ 1y

a linear estimator

T =Gy

CLASSICAL MODIFICATION (Tikhonov,. . )
still

>

T = argm:gn {‘]0_1/2@ — Hz)|]? + )\HZCHQ} convex

optimization

SOLUTION
tr=H'"CT'H+X)'H'C™y

also a linear estimator.



Observations

True signal

]



MSE estimator

min El|x — :%||2
€Z

With a linear estimator T = Gy problem becomes

mén {z'(I - GH)"(I - GH)x + Tr(GCG)}

bias variance
but z unknown!

“Solution”: minimal variance unbiased estimator

GH =1

Solution: Same as Zp - -

Our approach: minmax MSE linear estimator:

T = Gy, where:

mci;n | rﬁla}éL {z'(I - GH)" (I - GH)x + Tr(GCG)}



min{L*Amax(T /(I — GH)" (I — GH)T~1/?)

G
+ Tr(GCGT)}

mitn L2+t
T-12(1 - GH)"(I - GH)T™'/? < \I
Tr(GCGT) < t

Not an SDP ... yet.

36
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Schur’s complement:

T2 -GH)'(I-GH)TY2 < \I

i T-Y2(1 - GH)T
& = 0
(I - GH)T~'/? I

\ 7

Tr(GCGY) <t & >0

where g = vec (GC'/?).

Theorem I: Original MinMax MSE problem (1) is
equivalent to the SDP problem:

m%n L2\ +t

i T-Y2(1 - GH)T
(I - GH)T~'/? I

37



Theorem II: For the special case I'= I, SDP can be
solved explicitly. The optimal MMX MSE estimator is

Tomx = @ (HYCT H)THYC™y

Ve

TLs

L2
T L2+ Tr((HTC-TH)™ )

where Q0



Proof Structure

(I) Establish the structure of the optimal solution

G =VDVT(HTC-'H)"'HTC-!

where V' is the orthogonal matrix diagonalizing
HTYC7'H, i.e.,

H'C'H=VxV*

Y, = diag(oq,...,0,)

This is obtained by optimality condition. Using
this, we end up with an equivalent problem in
variable (matrix) D (Problem B below).

(IT) Show that 3 an optimal matrix D which is

diagonal.

(IIT) Find the diagonal elements of D.



The First Part of the Proot

The optimization problem

min  L?X\ + Tr(GCG?)

s.t.

(A) AN (-GH)T ;
[ - GH I N

Form the Lagrangian:

L(G,\U) = L\ + Tr(GCG™)

I Ul Al (I — GH)T
Us Us I - GH I

= L°X4+Tr(GCGY) — \Tr(Uy) — 2Tr(Us(I — GH))
— T’I“(U3),

40



Differentiating the Lagrangian with respect to G-

oL
R — — HT —1
5C 0 & |G=U, C

& GH=Uy(H'C'H)
= U,=(GH)(H'C'H)!

change of variables: D = VI (GH)V (VIV =1)

= VDV =GH

= |U, = VDVT(HTC-'H)™!

G=VDVY(H'C'H)"'H'C™!

In particular, if the orthogonal matrix V' is chosen as
the matrix which diagonalizes H'C~1H, i.e.

(H'C™'H) = Vsiiag(al, e ,O'nZVT

2.

then our problem (A), after substituting G becomes

41



min L°\ + Tr(D'DX™1)
(B) D)\
(I —-D)T'(I-D)=< M

Second part of the proof (“optimal D can be chosen

diagonal”).

Let 7, be the set of 2" matrices which are n x n,
diagonal, with the entries in the diagonal being +1 or
—1.

Claim If D* is an optimal solution of (B), then so is

JD*J, VY JeJg,

Proof

Tr((JDNHY(JDJHL™r = Tr(D'DX™1)]
(I—-JDNY(I—-JDJ)=X < (I-D)'(I-D)

Conclusion Since (B) is a convex problem =- its
optimal solution set is convex, so if D* is an optimal
solution, so is

2% > (JD*J)

JETn



( 1 0
«72 — { )
\ 0 1

1< 1
—ZJiDJi:—
4= 41 0 4d

General result

1 .
o Y JDJ = diag D
JEjn

Part 3 of the proof with D = diag(ds,...,dy,) problem (A)
< (B) reduces to

rdr;if\l LN+ > (d? /o)

St (1—d)? <A, Vi

This problem can be solved analytically, which gives the

final result claimed in Theorem II. 16



Observations

True signal

i

Minmax Use

LS



Support Vector Machine (SVM) Learning

A powerful tool for solving large-scale classification

problems.

Given to sets of point I™ and I~ we are looking for a
hyperplane H = {z|w’z + b = 0} which separates the
point in I from those in I~

w x+b

Minimum distance of x from H = |

want to solve:

wlx; + b‘
[w]

wT:Ui—l—b|} 1)

Lety; =1ifie I, y;=—1ifie I

max < min
w,b eI+

problem (1) can be reduced to

{ 2
S

or, finally to the so-called Linear SVM problem

1
1(1’1in{—HwH2
2

yz(w a:erb) > 1, Vz}

Vi (wTa:i + b) > 1, Vi} (2)



When the two sets cannot be separated by H, we relax
the constraints by penalizing points which are on the
wrong side of H. The final formulation is

o lwl?
(P) wg}go{ 5 T X

Yi (wTwz' +b)>1—¢, V’i}

The dual problem of (P) is

1
(D) max Yo — 5 Z QO Y Y Ti T -

]

When z; is mapped by a function ¢ to a
(high-dimensional) “feature space”
z! z; is replaced by ¢(z;)! ¢(x;) = k(z;, ;)

0 < K is the kernel function associated with ¢.

The dual problem (D) becomes

(NONLIN-D-SVM)

Oréréasf Z&Z——Zaz% (i, 24)
0<q;<c Vi
S, = «
aly=0




Multiple Kernel Learning (MKL)

In multi-modal learning applications, like object
categorization, where multiple feature representors are
present (e.g. in flower categorization: shape, color,
texture, etc.), we should employ multiple kernels to
achieve good visual discrimination as well as

within-class variation.

Variable Sparsity Kernel Learning (VSKL) for

Binary Classification

Training data set:
D:{ximyia 1= 17"'7m|xi EX) Yi € {_171}}

The kernels are divided into n groups (feature

representors), j-th group has n, kernels.

pik(-) = feature space mapping corresponding to
K(-,-), the k-th kernel of the j-th component.

Consider the problem of learning a linear discriminant

function

fl) =) ZJ wjkPir(x) +b.

j=1 k=1



VSKL formulation aims at classifiers that will
generate a non-sparse combination of kernels
representing different groups, while having a sparse
selection of nonredundant kernels with given feature

representors.

The optimization problem (NLP-DUAL VSKL)

modeling the above requirements:

(P-VSKL)
I 2q ] 1/q
: 1
wjf&&ZD? S: (Z: ||w3k|2> +cC Zgz
/ (]
S.t.
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DUAL OF P-VSKL
Let a; = (5, wjill2)?, using

Lemma 1

4 ( \
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\ &rp J

p=—I_
\ q — 1

the objective function in (3)
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becomes
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Further, using

Lemma 2

2
. wikl|?
<Z ||wj’f|2> = 1IN 4 2. | )\]ZH ‘Z)‘Jk =1, A 20
k J k

\ AJ J

Problem (3), in variables wj, Ak, vj,b becomes

min max min ZZ Hw]k” —I—CZ{{Z
Wjk,b,& YEAp A\jEAT

jlkl

Ve

f(w,\,7v,8)
s.t.

(4b) & >0

(4)

f is concave (linear) in v on A, = compact convex set

and convex in A on ® AJ = compact convex set.

By Sion-Kabutani: minmax theorem

max min fw, A,7,€) = minmax f(w, A, 7,¢)

so, a (partial) dual of (4) is
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Now, for fixed A, f is convex in w, b, £ on the feasible
set (4a) (4b), which is a closed convex set. Moreover, f
is concave (linear) in v on the compact convex set A,;
hence by Rockafellar minmax theorem, (5) is
converted to

i i A t. (4a), (4b
Aén@}gj%%{ﬁgf(w, ,7,§) st (4a), ( )} (6)

We now dualize the problem in curly brackets { } to
obtain

(D-VSKL)
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Algorithm for solving (D-VSKL)

Essentially we solve

. Ajk®jk
min ¢ = maxX Ya; —al E 2k Ak Qs «
)ijAJ acS,veEA - ’}/J
J

7

\ f)x(:;aA)

(7)

G is a convex (nonsmooth) function.

Proposition 1 If 3 u>0,0<7 <1 s.t. Vj,k:

A (Qik) = T, Amax(Qjk) <

then, for all p > 1, G(-) 1s Lipschitz continuous in the
/1 norm.

Functions with the above properties are amenable for
solution by the Mirror Descent (MD) algorithm. For a
feasible set which is a product of simplices ® A7, MD
based on a proximal term given by relative-entropy is
theoretically optimal, and practically efficient: at
iteration t:

min G(\*) — G* < O(l)vlogni

1<s<t

S

Notice the very weak dependence on the

design-dimension n.




The MD algorithm needs an oracle, a procedure that at
every iteration given a current point A, will generate the
function value G()\) and a subgradient of G at .

The Oracle for problem (7) is obtained by the

solution of the problem

A 8
ozE,Sr{Lléy}éApfA(a, ) ( )

Two methods for solving problem (8):
Method I Conic Quadratic Programming

Z Zk JkQJk'

i

max Yo — —oz
aES, HEA, f>\ (’77 ) 1

(9)
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Using the identity 2v;v; = %(’Yj + ’Uj)2 — %(%‘ - vj)2

the j-th constraint in (9) becomes

(Z Ajk@;,k> ot 3 (v~ ) < 53+ v5)

which is a CQ constraint. The other constraint and the
objective function in (10) are linear, so (10) is indeed a
CQ problem that can be solved by IP methods
(MOSEK, CPLEX,...)



Method IT Block Coordinate Descent (BCD)
This method is based on the fact that in problem (9):

Nik@ ik

1
max 4 fi(3.0) = Zo; — a” (3 2k
- ’7]
J

(9)

For fixed ~, the problem in « is the classical SVM

problem, but with matrix

Q:Z 2k

Nk Q ik
Yy
For SVM extremely efficient algorithms are available.

For fixed a, the problem in v has an explicit solution
(¢ >1,p<o0)

where
n;
D, = Mol Qo
Jj Jjk Jjk
k=1

Ifg=1 p=o00, then v; = 1.

The above fact suggests an algorithm that sequentially
solves the a-problem with fixed v, and then compute ~
from the above expression (A BCD method).



Generally, a BCD method may not converge, but it can

be proved, that for our particular problem (8),

A 8
aednax (o, ) (8)

the BCD method does converge.

CONCLUSION

For very large-scale ML problems, like VSKL, method
II combined with the MD algorithm offer a very
efficient algorithm (the main step in MD is projection
on QAP w.r.t. an entropy distance, which has an

explicit solution as well!)



Numerical Experiment

Dataset: Caltech-101 collection of 101 categories of
objects like faces, watches, ants, etc. Number of images
per category 40—-800. Each image is represented using
five feature descriptors (SIFTs)

Specific example: 3 binary classification problems

# groups: n = 5, # of kernels in group j, n; =9 Vj

Comparing average testset accuracy for 3 methods
MKL, SVM and our VSKL.
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