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Stable sets and cliques

Throughout this presentation we deal with simple graphs
(that is, graphs without loops and without parallel edges).
These simple graphs are designated just by graphs.
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Stable sets and cliques

A graph G with vertex set V (G) = {1,2,3,4,5,6,7,8} and
edge set E(G) = {12,23,36,13,34,45,56,57,58}.
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Stable sets and cliques

A graph G with vertex set V (G) = {1,2,3,4,5,6,7,8} and
edge set E(G) = {12,23,36,13,34,45,56,57,58}.
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A graph G with vertex set V (G) = {1,2,3,4,5,6,7,8} and
edge set E(G) = {12,23,36,13,34,45,56,57,58}.
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Stable sets and cliques

A graph G with vertex set V (G) = {1,2,3,4,5,6,7,8} and
edge set E(G) = {12,23,36,13,34,45,56,57,58}.
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A stable set S = {3,5} and a clique K = {1,2,3}.
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A maximum stable set

A graph G with vertex set V (G) = {1,2,3,4,5,6,7,8} and
edge set E(G) = {12,23,36,13,34,45,56,57,58}.

1

2
3

6

4
5

7

8



Convex
Quadratic

Programming
in Graphs

Domingos
Moreira
Cardoso

Outline

Preliminaries
Notation and basic
concepts

Complexity of the
maximum stable set
problem

Graph eigenvalues

Convex
quadratic
programming
techniques
The Motzkin-Straus
quadratic program

Quadratic upper
bounds on the
stability number

Graphs with
convex
QP-stability
number
Optimality conditions

The class of
Q-graphs

Recognition of
Q-graphs

(κ, τ)-regular
sets

Bibliography

A maximum stable set

A graph G with vertex set V (G) = {1,2,3,4,5,6,7,8} and
edge set E(G) = {12,23,36,13,34,45,56,57,58}.
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A maximum stable set S of G

S = {1,4,6,7,8} ⇒ α(G) = 5
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A maximum clique

1

2
3

6

4
5

7

8

A maximum clique K of G

K = {1,2,3} ⇒ ω(G) = 3
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Stability number

A vertex subset S is a stable set if no pair of vertices in S is
connected by an edge.
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Stability number

A vertex subset S is a stable set if no pair of vertices in S is
connected by an edge.
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Stability number

A vertex subset S is a stable set if no pair of vertices in S is
connected by an edge.

A stable set S of a graph G induces a 0-regular subgraph.
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Stability number

A vertex subset S is a stable set if no pair of vertices in S is
connected by an edge.

A stable set S of a graph G induces a 0-regular subgraph.

The stability number, α(G), is the cardinality of maximum
stable set of G.
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Clique number

A vertex subset S is a clique if every pair of vertices in S is
connected by an edge.
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Clique number

A vertex subset S is a clique if every pair of vertices in S is
connected by an edge.

A clique K of a graph G induces a (|K | − 1)-regular
subgraph.
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Clique number

A vertex subset S is a clique if every pair of vertices in S is
connected by an edge.

A clique K of a graph G induces a (|K | − 1)-regular
subgraph.

The clique number, ω(G), is the cardinality of maximum
clique.
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Matchings

A edge subset M ⊆ E(G) is a matching if there are no
two edges with a common vertex. A matching of
maximum size is a maximum matching.



Convex
Quadratic

Programming
in Graphs

Domingos
Moreira
Cardoso

Outline

Preliminaries
Notation and basic
concepts

Complexity of the
maximum stable set
problem

Graph eigenvalues

Convex
quadratic
programming
techniques
The Motzkin-Straus
quadratic program

Quadratic upper
bounds on the
stability number

Graphs with
convex
QP-stability
number
Optimality conditions

The class of
Q-graphs

Recognition of
Q-graphs

(κ, τ)-regular
sets

Bibliography

Matchings

A edge subset M ⊆ E(G) is a matching if there are no
two edges with a common vertex. A matching of
maximum size is a maximum matching.
An example:
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Matchings

A edge subset M ⊆ E(G) is a matching if there are no
two edges with a common vertex. A matching of
maximum size is a maximum matching.
An example:
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A perfect matching is a matching M such that each
vertex v ∈ V (G) is incident in one edge of M.
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Line graphs

� The line graph L(G) of a graph G has the edges of G as
its vertices. Two vertices of L(G) are adjacent if and only if
the corresponding edges of G have a vertex in common.
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Line graphs

� The line graph L(G) of a graph G has the edges of G as
its vertices. Two vertices of L(G) are adjacent if and only if
the corresponding edges of G have a vertex in common.
� A matching in G corresponds to a stable set in L(G).
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Line graphs

� The line graph L(G) of a graph G has the edges of G as
its vertices. Two vertices of L(G) are adjacent if and only if
the corresponding edges of G have a vertex in common.
� A matching in G corresponds to a stable set in L(G).
� A graph G and its line graph L(G) are depicted in the next
figure.
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Line graphs

� The line graph L(G) of a graph G has the edges of G as
its vertices. Two vertices of L(G) are adjacent if and only if
the corresponding edges of G have a vertex in common.
� A matching in G corresponds to a stable set in L(G).
� A graph G and its line graph L(G) are depicted in the next
figure.
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� The graph G has the perfect matching {a,d ,g}
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Line graphs

� The line graph L(G) of a graph G has the edges of G as
its vertices. Two vertices of L(G) are adjacent if and only if
the corresponding edges of G have a vertex in common.
� A matching in G corresponds to a stable set in L(G).
� A graph G and its line graph L(G) are depicted in the next
figure.
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� The graph G has the perfect matching {a,d ,g} and then
L(G) has the maximum stable set {a,d ,g}.
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The complement of a graph

� The complement of a graph G is the graph Ḡ such that
V (Ḡ) = V (G) and E(Ḡ) = {ij : i , j ∈ V (G) ∧ ij 6∈ E(G)}.
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The complement of a graph

� The complement of a graph G is the graph Ḡ such that
V (Ḡ) = V (G) and E(Ḡ) = {ij : i , j ∈ V (G) ∧ ij 6∈ E(G)}.
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The complement of a graph

� The complement of a graph G is the graph Ḡ such that
V (Ḡ) = V (G) and E(Ḡ) = {ij : i , j ∈ V (G) ∧ ij 6∈ E(G)}.
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Ḡ

� Then α(G) = ω(Ḡ) and determine the stability number is
equivalent to determine the clique number.
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Complexity results

�[Karp, 1972] Given a nonnegative integer k , to determine
if a graph G has a stable set of size k is NP-hard.
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Complexity results

�[Karp, 1972] Given a nonnegative integer k , to determine
if a graph G has a stable set of size k is NP-hard.

�[Alekseev, 1982] Considering H-free graphs, if H contains
a) a cycle, or
b) a vertex of degree more than three, or
c) two vertices of degree three in the same connected

component.
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Complexity results

�[Karp, 1972] Given a nonnegative integer k , to determine
if a graph G has a stable set of size k is NP-hard.

�[Alekseev, 1982] Considering H-free graphs, if H contains
a) a cycle, or
b) a vertex of degree more than three, or
c) two vertices of degree three in the same connected

component.
Then the maximum stable set problem is NP-hard in the
class of H-free graphs.
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A few polynomial time classes for the maximum
stable set problem

� There are classes of graphs for which the maximum
stable set problem can be solved in polynomial time:
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A few polynomial time classes for the maximum
stable set problem

� There are classes of graphs for which the maximum
stable set problem can be solved in polynomial time:

� Claw-free graphs, which includes the line-graphs
[(Berge, 1957), (Minty, 1980), (Sbihi, 1980)].

� Particular subclasses of P5-free graphs [(Mosca, 1997),
(Mosca, 1999)], including (P5,K1,m)-free graphs,
(P5,K2,3)-free graphs and (P6,C4)-free graphs.

� . . .
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The adjacency matrix of a graph and its
eigenvalues

� A graph G of order n can be represented by its
adjacency matrix, that is, the n × n matrix:
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The adjacency matrix of a graph and its
eigenvalues

� A graph G of order n can be represented by its
adjacency matrix, that is, the n × n matrix:
� AG =

(
aij
)

such that

aij =

{
1, if ij ∈ E(G)
0, otherwise.
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The adjacency matrix of a graph and its
eigenvalues

� A graph G of order n can be represented by its
adjacency matrix, that is, the n × n matrix:
� AG =

(
aij
)

such that

aij =

{
1, if ij ∈ E(G)
0, otherwise.

� Thus AG is symmetric and it has n real eigenvalues

λmax (AG) = λ1 ≥ λ2 ≥ · · · ≥ λn = λmin(AG).
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Basic spectral properties of a graph

� If a graph G has at least one edge, then

λmin(AG) ≤ −1.

In fact, λmin(AG) = −1 if and only if each component of G is
complete.
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Basic spectral properties of a graph

� If a graph G has at least one edge, then

λmin(AG) ≤ −1.

In fact, λmin(AG) = −1 if and only if each component of G is
complete.

� Denoting the minimum and maximum degree of the
vertices of a graph G by δ(G) and ∆(G), respectively,

δ(G) ≤ d̄G ≤ λmax (AG) ≤ ∆(G),

where d̄G is the average degree of the vertices of G.
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The Motzkin-Straus quadratic program

� Consider a graph G and the quadratic program

f (G) = max{1
2

xT AGx : x ∈ ∆},

where ∆ = {x ≥ 0 : êT x = 1} and êT = (1,1, . . . ,1).
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The Motzkin-Straus quadratic program

� Consider a graph G and the quadratic program

f (G) = max{1
2

xT AGx : x ∈ ∆},

where ∆ = {x ≥ 0 : êT x = 1} and êT = (1,1, . . . ,1).

Theorem[Motzkin-Straus, 1965]

If G is a graph with clique number ω(G), then

f (G) =
1
2

(1− 1
ω(G)

). (1)
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The Motzkin-Straus quadratic program

� Consider a graph G and the quadratic program

f (G) = max{1
2

xT AGx : x ∈ ∆},

where ∆ = {x ≥ 0 : êT x = 1} and êT = (1,1, . . . ,1).

Theorem[Motzkin-Straus, 1965]

If G is a graph with clique number ω(G), then

f (G) =
1
2

(1− 1
ω(G)

). (1)

� From (1), after some algebraic manipulation,
1

α(G)
= min{xT (AG + I)x : x ∈ ∆}. (2)
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A family of quadratic programs

� Consider the families of quadratic programs (with τ > 0):

νG(τ) = min
x∈∆

xT (
AG

τ
+ I)x , (3)

υG(τ) = max
y≥0

2êT y − yT (
AG

τ
+ I)y . (4)
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A family of quadratic programs

� Consider the families of quadratic programs (with τ > 0):

νG(τ) = min
x∈∆

xT (
AG

τ
+ I)x , (3)

υG(τ) = max
y≥0

2êT y − yT (
AG

τ
+ I)y . (4)

� Then νG(1) is the M-S modified formulation (2).
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A family of quadratic programs

� Consider the families of quadratic programs (with τ > 0):

νG(τ) = min
x∈∆

xT (
AG

τ
+ I)x , (3)

υG(τ) = max
y≥0

2êT y − yT (
AG

τ
+ I)y . (4)

� Then νG(1) is the M-S modified formulation (2).

Theorem[C, 2003]

If x∗ and y∗ are optimal solutions for (3) and (4),
respectively, then x∗

νG(τ) and y∗

υG(τ) are optimal solutions of (4)
and (3), respectively. Furthermore, υG(τ) = 1

νG(τ) .
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A family of quadratic programs

� Consider the families of quadratic programs (with τ > 0):

νG(τ) = min
x∈∆

xT (
AG

τ
+ I)x , (3)

υG(τ) = max
y≥0

2êT y − yT (
AG

τ
+ I)y . (4)

� Then νG(1) is the M-S modified formulation (2).

Theorem[C, 2003]

If x∗ and y∗ are optimal solutions for (3) and (4),
respectively, then x∗

νG(τ) and y∗

υG(τ) are optimal solutions of (4)
and (3), respectively. Furthermore, υG(τ) = 1

νG(τ) .

� As a consequence of this theorem, υG(1) = α(G).



Convex
Quadratic

Programming
in Graphs

Domingos
Moreira
Cardoso

Outline

Preliminaries
Notation and basic
concepts

Complexity of the
maximum stable set
problem

Graph eigenvalues

Convex
quadratic
programming
techniques
The Motzkin-Straus
quadratic program

Quadratic upper
bounds on the
stability number

Graphs with
convex
QP-stability
number
Optimality conditions

The class of
Q-graphs

Recognition of
Q-graphs

(κ, τ)-regular
sets

Bibliography

Properties of the family of quadratic programs

� The family of quadratic programs

υG(τ) = max
y≥0

2êT y − yT (
AG

τ
+ I)y ,

has the following properties (for all τ > 0):
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Properties of the family of quadratic programs

� The family of quadratic programs

υG(τ) = max
y≥0

2êT y − yT (
AG

τ
+ I)y ,

has the following properties (for all τ > 0):
� α(G) ≤ υG(τ),
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Properties of the family of quadratic programs

� The family of quadratic programs

υG(τ) = max
y≥0

2êT y − yT (
AG

τ
+ I)y ,

has the following properties (for all τ > 0):
� α(G) ≤ υG(τ),
� 1 ≤ υG(τ) ≤ n,
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Properties of the family of quadratic programs

� The family of quadratic programs

υG(τ) = max
y≥0

2êT y − yT (
AG

τ
+ I)y ,

has the following properties (for all τ > 0):
� α(G) ≤ υG(τ),
� 1 ≤ υG(τ) ≤ n,
� υG(τ) = 1 if and only if G is complete,
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Properties of the family of quadratic programs

� The family of quadratic programs

υG(τ) = max
y≥0

2êT y − yT (
AG

τ
+ I)y ,

has the following properties (for all τ > 0):
� α(G) ≤ υG(τ),
� 1 ≤ υG(τ) ≤ n,
� υG(τ) = 1 if and only if G is complete,
� υG(τ) = n if and only if G has no edges,
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Properties of the family of quadratic programs

� The family of quadratic programs

υG(τ) = max
y≥0

2êT y − yT (
AG

τ
+ I)y ,

has the following properties (for all τ > 0):
� α(G) ≤ υG(τ),
� 1 ≤ υG(τ) ≤ n,
� υG(τ) = 1 if and only if G is complete,
� υG(τ) = n if and only if G has no edges,

� and the function υG :]0,+∞[ 7→ [1,n] verifies:
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Properties of the family of quadratic programs

� The family of quadratic programs

υG(τ) = max
y≥0

2êT y − yT (
AG

τ
+ I)y ,

has the following properties (for all τ > 0):
� α(G) ≤ υG(τ),
� 1 ≤ υG(τ) ≤ n,
� υG(τ) = 1 if and only if G is complete,
� υG(τ) = n if and only if G has no edges,

� and the function υG :]0,+∞[ 7→ [1,n] verifies:
� 0 < τ1 < τ2 ⇒ υG(τ1) ≤ υG(τ2),
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Properties of the family of quadratic programs

� The family of quadratic programs

υG(τ) = max
y≥0

2êT y − yT (
AG

τ
+ I)y ,

has the following properties (for all τ > 0):
� α(G) ≤ υG(τ),
� 1 ≤ υG(τ) ≤ n,
� υG(τ) = 1 if and only if G is complete,
� υG(τ) = n if and only if G has no edges,

� and the function υG :]0,+∞[ 7→ [1,n] verifies:
� 0 < τ1 < τ2 ⇒ υG(τ1) ≤ υG(τ2),
� ∃τ∗ ≥ 1 such that υG(τ) = α(G) ∀τ ∈]0, τ∗],
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Properties of the family of quadratic programs

� The family of quadratic programs

υG(τ) = max
y≥0

2êT y − yT (
AG

τ
+ I)y ,

has the following properties (for all τ > 0):
� α(G) ≤ υG(τ),
� 1 ≤ υG(τ) ≤ n,
� υG(τ) = 1 if and only if G is complete,
� υG(τ) = n if and only if G has no edges,

� and the function υG :]0,+∞[ 7→ [1,n] verifies:
� 0 < τ1 < τ2 ⇒ υG(τ1) ≤ υG(τ2),
� ∃τ∗ ≥ 1 such that υG(τ) = α(G) ∀τ ∈]0, τ∗],
� ∀U ⊂ V (G) υG−U(τ) ≤ υG(τ).
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The convex quadratic cases

� If E(G) 6= ∅ and τ ≥ −λmin(AG), then the quadratic
program υG(τ) is convex.
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The convex quadratic cases

� If E(G) 6= ∅ and τ ≥ −λmin(AG), then the quadratic
program υG(τ) is convex. The optimal value υG(−λmin(AG))
was firstly introduced as an upper bound on α(G) in (Luz,
1995).



Convex
Quadratic

Programming
in Graphs

Domingos
Moreira
Cardoso

Outline

Preliminaries
Notation and basic
concepts

Complexity of the
maximum stable set
problem

Graph eigenvalues

Convex
quadratic
programming
techniques
The Motzkin-Straus
quadratic program

Quadratic upper
bounds on the
stability number

Graphs with
convex
QP-stability
number
Optimality conditions

The class of
Q-graphs

Recognition of
Q-graphs

(κ, τ)-regular
sets

Bibliography

The convex quadratic cases

� If E(G) 6= ∅ and τ ≥ −λmin(AG), then the quadratic
program υG(τ) is convex. The optimal value υG(−λmin(AG))
was firstly introduced as an upper bound on α(G) in (Luz,
1995). υG(−λmin(AG)) is simple denoted υ(G).
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The convex quadratic cases

� If E(G) 6= ∅ and τ ≥ −λmin(AG), then the quadratic
program υG(τ) is convex. The optimal value υG(−λmin(AG))
was firstly introduced as an upper bound on α(G) in (Luz,
1995). υG(−λmin(AG)) is simple denoted υ(G).

Theorem[Luz, 1995]

Let G be a graph with at least one edge. Then υ(G) = α(G)
iff for a maximum stable set S ⊂ V (G) (and then for all)

−λmin(AG) ≤ |NG(v) ∩ S| ∀v ∈ V (G) \ S.
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The convex quadratic cases

� If E(G) 6= ∅ and τ ≥ −λmin(AG), then the quadratic
program υG(τ) is convex. The optimal value υG(−λmin(AG))
was firstly introduced as an upper bound on α(G) in (Luz,
1995). υG(−λmin(AG)) is simple denoted υ(G).

Theorem[Luz, 1995]

Let G be a graph with at least one edge. Then υ(G) = α(G)
iff for a maximum stable set S ⊂ V (G) (and then for all)

−λmin(AG) ≤ |NG(v) ∩ S| ∀v ∈ V (G) \ S.

� υ(G) = α(G) iff there exists a stable set S ⊂ V (G) such
that the above inequality holds (C. and Cvetković, 2006).
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Optimality condition for υ(G)

Theorem[C., 2001]

Let ai
G be the i-th row of the matrix AG. Then the n-tuple of

real numbers x∗ is an optimal solutions for the convex
quadratic program υ(G) iff ∀i ∈ V (G)

x∗i = max{0,1− ri(x∗)},

where ri(x∗) =
ai

Gx∗

d−λmin(AG)e .
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Optimality condition for υ(G)

Theorem[C., 2001]

Let ai
G be the i-th row of the matrix AG. Then the n-tuple of

real numbers x∗ is an optimal solutions for the convex
quadratic program υ(G) iff ∀i ∈ V (G)

x∗i = max{0,1− ri(x∗)},

where ri(x∗) =
ai

Gx∗

d−λmin(AG)e .

It is immediate that υ(G) = α(G) iff υ(G) has a 0− 1 optimal
solution x∗ and in such a case x∗ is the characteristic vector
of a maximum stable set.
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Optimality condition for υ(G)

Theorem[C., 2001]

Let ai
G be the i-th row of the matrix AG. Then the n-tuple of

real numbers x∗ is an optimal solutions for the convex
quadratic program υ(G) iff ∀i ∈ V (G)

x∗i = max{0,1− ri(x∗)},

where ri(x∗) =
ai

Gx∗

d−λmin(AG)e .

It is immediate that υ(G) = α(G) iff υ(G) has a 0− 1 optimal
solution x∗ and in such a case x∗ is the characteristic vector
of a maximum stable set. Therefore, the above optimality
conditions can be used, in a combinatorial way, to find (or to
conclude that does not exists) a 0− 1 optimal solution.
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Graphs with convex QP-stability number

� A graph G with at least one edge such that υ(G) = α(G)
is designated graph with convex QP-stability number,
where QP means quadratic program.
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Graphs with convex QP-stability number

� A graph G with at least one edge such that υ(G) = α(G)
is designated graph with convex QP-stability number,
where QP means quadratic program. These graphs are
also called Q-graphs.



Convex
Quadratic

Programming
in Graphs

Domingos
Moreira
Cardoso

Outline

Preliminaries
Notation and basic
concepts

Complexity of the
maximum stable set
problem

Graph eigenvalues

Convex
quadratic
programming
techniques
The Motzkin-Straus
quadratic program

Quadratic upper
bounds on the
stability number

Graphs with
convex
QP-stability
number
Optimality conditions

The class of
Q-graphs

Recognition of
Q-graphs

(κ, τ)-regular
sets

Bibliography

Graphs with convex QP-stability number

� A graph G with at least one edge such that υ(G) = α(G)
is designated graph with convex QP-stability number,
where QP means quadratic program. These graphs are
also called Q-graphs.
The cubic graph G, depicted in the next figure, is a Q-graph
with λmin(AG) = −2 and υ(G) = 4 = α(G).
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An application of the discrete optimality
condition

� Let us apply the discrete optimality conditions to the
following graph.
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An application of the discrete optimality
condition

� Let us apply the discrete optimality conditions to the
following graph.
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3
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 1 − r(x)
x1 1 0 0 0 1
x2 1 1 0 0 0 0 1
x3 1 1 0 1 0 0 0 0
x4 1 1 0 1 0 0 0 0 0 1
x5 1 1 0 1 1 0 0 0 0 0 1
x6 1 1 0 1 1 0 0 0 0 0 0
x7 1 1 0 1 1 0 0 0 0 0 0
x8 1 1 0 1 1 0 0 0 0 0 0
x9 1 1 0 1 1 0 0 0 0 0 0
x10 1 1 0 1 1 0 0 0 0 0 0
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Additional examples of Q-graphs

A Q-graph with λmin(AG) = −2 and υG(2) = 3 = α(G).

6 7

3
4

5

1 2



Convex
Quadratic

Programming
in Graphs

Domingos
Moreira
Cardoso

Outline

Preliminaries
Notation and basic
concepts

Complexity of the
maximum stable set
problem

Graph eigenvalues

Convex
quadratic
programming
techniques
The Motzkin-Straus
quadratic program

Quadratic upper
bounds on the
stability number

Graphs with
convex
QP-stability
number
Optimality conditions

The class of
Q-graphs

Recognition of
Q-graphs

(κ, τ)-regular
sets

Bibliography

Additional examples of Q-graphs

A Q-graph with λmin(AG) = −3 and υG(3) = 12 = α(G).



Convex
Quadratic

Programming
in Graphs

Domingos
Moreira
Cardoso

Outline

Preliminaries
Notation and basic
concepts

Complexity of the
maximum stable set
problem

Graph eigenvalues

Convex
quadratic
programming
techniques
The Motzkin-Straus
quadratic program

Quadratic upper
bounds on the
stability number

Graphs with
convex
QP-stability
number
Optimality conditions

The class of
Q-graphs

Recognition of
Q-graphs

(κ, τ)-regular
sets

Bibliography

Another application of the discrete optimality
condition

� Let us apply the discrete optimality conditions to the
following graph. 6 7

3 4 5

1 2
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Another application of the discrete optimality
condition

� Let us apply the discrete optimality conditions to the
following graph. 6 7

3 4 5

1 2

x1 x2 x3 x4 x5 x6 x7 1 − r(x)
x1 1 0 0 0 1
x2 1 0 0 0 1 1
x3 1 0 0 0 1 1 1
x4 1 0 0 0 1 1 1 −1/2
x5 1 0 0 0 1 1 1 1/2
x4 1 0 0 0 1 1 0 0
x5 1 0 0 0 1 1 0 0
x6 1 0 0 0 1 1 0 0
x7 1 0 0 0 1 1 0 0
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Some properties of Q-graphs

� The class of Q-graphs is not hereditary (it is not closed
under vertex deletion) (Lozin and C, 2012).
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Some properties of Q-graphs

� The class of Q-graphs is not hereditary (it is not closed
under vertex deletion) (Lozin and C, 2012). However, if G is
a Q-graph and ∃U ⊆ V (G) such that

α(G) = α(G − U),

then G − U is a Q-graph.
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Some properties of Q-graphs

� The class of Q-graphs is not hereditary (it is not closed
under vertex deletion) (Lozin and C, 2012). However, if G is
a Q-graph and ∃U ⊆ V (G) such that

α(G) = α(G − U),

then G − U is a Q-graph.
� The following properties appear in (C,2001).

A G is a Q-graph iff each component is a Q-graph.
There exists an infinite number of Q-graphs (C, 2001).
A connected graph with at least one edge, which is nor
a star neither a triangle, has a perfect matching if and
only if its line graph is a Q-graph.
If each component of G has a nonzero even number of
edges then L(L(G)) is a Q-graph.
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Recognition of Q-graphs

� Every graph G has a subgraph H such that α(G) = α(H)
and it is a Q-graph.
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Recognition of Q-graphs

� Every graph G has a subgraph H such that α(G) = α(H)
and it is a Q-graph.
� If ∃v ∈ V (G) such that

υ(G) 6= max{υ(G − {v}), υ(G − NG(v))},

then G is not a Q-graph.
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Recognition of Q-graphs

� Every graph G has a subgraph H such that α(G) = α(H)
and it is a Q-graph.
� If ∃v ∈ V (G) such that

υ(G) 6= max{υ(G − {v}), υ(G − NG(v))},

then G is not a Q-graph.

� Consider that ∃v ∈ V (G) such that
υ(G − {v}) 6= υ(G − NG(v)).

1 If υ(G) = υ(G − {v}) then G is a Q-graph iff G − {v} is
a Q-graph.

2 If υ(G) = υ(G − NG(v)) then G is a Q-graph iff
G − NG(v) is a Q-graph.
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Recognition of Q-graphs (cont.)

� We have problems when ∀v ∈ V (G)

υ(G) = υ(G − v) = υ(G − NG(v)) and
λmin(AG) = λmin(AG−v ) = λmin(AG−NG(v)).
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Recognition of Q-graphs (cont.)

� The graphs having an induced subgraph G without
isolated vertices such that υ(G) is integer and ∀v ∈ V (G)

1 υ(G) = υ(G − NG(v)),
2 λmin(AG) = λmin(AG−NG(v)),

are called adverse graphs.
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Recognition of Q-graphs (cont.)

� The graphs having an induced subgraph G without
isolated vertices such that υ(G) is integer and ∀v ∈ V (G)

1 υ(G) = υ(G − NG(v)),
2 λmin(AG) = λmin(AG−NG(v)),

are called adverse graphs.

� The graph G depicted in the next figure is an adverse
graph (which is a Q-graph, since υ(G) = 5 = α(G)).
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The adverse graph conjecture

� The following conjecture is open.
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The adverse graph conjecture

� The following conjecture is open.

Conjecture

Every adverse graph is a Q-graph.
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(κ, τ)-regular sets

� A vertex subset S ⊆ V (G) is (k , τ)-regular if induces a
k -regular subgraph and ∀v /∈ S |NG(v) ∩ S| = τ .
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(κ, τ)-regular sets

� A vertex subset S ⊆ V (G) is (k , τ)-regular if induces a
k -regular subgraph and ∀v /∈ S |NG(v) ∩ S| = τ . The
Pertersen graph has several (k , τ)-regular sets.
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(κ, τ)-regular sets

� A vertex subset S ⊆ V (G) is (k , τ)-regular if induces a
k -regular subgraph and ∀v /∈ S |NG(v) ∩ S| = τ . The
Pertersen graph has several (k , τ)-regular sets.
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(κ, τ)-regular sets

� A vertex subset S ⊆ V (G) is (k , τ)-regular if induces a
k -regular subgraph and ∀v /∈ S |NG(v) ∩ S| = τ . The
Pertersen graph has several (k , τ)-regular sets.

3 4
9 10

6

7 8

5

1 2



Convex
Quadratic

Programming
in Graphs

Domingos
Moreira
Cardoso

Outline

Preliminaries
Notation and basic
concepts

Complexity of the
maximum stable set
problem

Graph eigenvalues

Convex
quadratic
programming
techniques
The Motzkin-Straus
quadratic program

Quadratic upper
bounds on the
stability number

Graphs with
convex
QP-stability
number
Optimality conditions

The class of
Q-graphs

Recognition of
Q-graphs

(κ, τ)-regular
sets

Bibliography

(κ, τ)-regular sets

� A vertex subset S ⊆ V (G) is (k , τ)-regular if induces a
k -regular subgraph and ∀v /∈ S |NG(v) ∩ S| = τ . The
Pertersen graph has several (k , τ)-regular sets.
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S1 = {1,2,3,4} is (0,2)-regular.
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(κ, τ)-regular sets

� A vertex subset S ⊆ V (G) is (k , τ)-regular if induces a
k -regular subgraph and ∀v /∈ S |NG(v) ∩ S| = τ . The
Pertersen graph has several (k , τ)-regular sets.
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(κ, τ)-regular sets

� A vertex subset S ⊆ V (G) is (k , τ)-regular if induces a
k -regular subgraph and ∀v /∈ S |NG(v) ∩ S| = τ . The
Pertersen graph has several (k , τ)-regular sets.
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S2 = {5,6,7,8,9,10} is (1,3)-regular.
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(κ, τ)-regular sets

� A vertex subset S ⊆ V (G) is (k , τ)-regular if induces a
k -regular subgraph and ∀v /∈ S |NG(v) ∩ S| = τ . The
Pertersen graph has several (k , τ)-regular sets.
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(κ, τ)-regular sets

� A vertex subset S ⊆ V (G) is (k , τ)-regular if induces a
k -regular subgraph and ∀v /∈ S |NG(v) ∩ S| = τ . The
Pertersen graph has several (k , τ)-regular sets.
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S3 = {1,2,5,7,8} is (2,1)-regular.
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A few properties

From [Barbosa, C, 2004] it follows that a graph G 6= K2
has a perfect matching iff its line graph has a
(0,2)-regular set.
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A few properties

From [Barbosa, C, 2004] it follows that a graph G 6= K2
has a perfect matching iff its line graph has a
(0,2)-regular set.
A p-regular graph G of order n is strongly regular with
parameters (n,p,a, c) iff for every vertex v ∈ V (G), the
vertex subset

S = NG(v)

is (a, c)-regular in G − v [C, Sciriha, Zerafa, 2010].
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A few properties

From [Barbosa, C, 2004] it follows that a graph G 6= K2
has a perfect matching iff its line graph has a
(0,2)-regular set.
A p-regular graph G of order n is strongly regular with
parameters (n,p,a, c) iff for every vertex v ∈ V (G), the
vertex subset

S = NG(v)

is (a, c)-regular in G − v [C, Sciriha, Zerafa, 2010].
Equivalent to the above statement, we may say that a
p-regular graph G of order n is strongly regular with
parameters (n,p,a, c) iff for every vertex v ∈ V (G), the
vertex subset

S = V (G) \ {v} ∪ NG(v))

is (p − c,p − a− 1)-regular in G − v .
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(κ, τ)-regular sets and adverse graphs

Theorem[C., 2003]

An adverse graph G is a Q-graph iff ∃S ⊆ V (G) which is
(0, τ)-regular, with τ = −λmin(AG).
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(κ, τ)-regular sets and adverse graphs

Theorem[C., 2003]

An adverse graph G is a Q-graph iff ∃S ⊆ V (G) which is
(0, τ)-regular, with τ = −λmin(AG).

� Let G be a graph with at least one edge and consider the
modified convex quadratic program on a parameter k ,

υk (G) = max
x≥0

2êT x − τ

k + τ
xT (

AG

τ
+ In)x ,

where τ = −λmin(AG).
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(κ, τ)-regular sets and k-regular induced
subgraphs

Theorem[C., Kamiński and Lozin, 2007]

Let G be a graph of order n. If ∃S ⊂ V (G) induces a
subgraph H such that d̄H = k (where d̄H denotes the
average degree of H, then |S| ≤ υk (G).
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(κ, τ)-regular sets and k-regular induced
subgraphs

Theorem[C., Kamiński and Lozin, 2007]

Let G be a graph of order n. If ∃S ⊂ V (G) induces a
subgraph H such that d̄H = k (where d̄H denotes the
average degree of H, then |S| ≤ υk (G).

Theorem[C., Kamiński and Lozin, 2007]

If ∃S ⊆ V (G) inducing a k -regular subgraph, then
|S| = υk (G) iff k + τ ≤ |NG(v) ∩ S| ∀v ∈ V (G) \ S.
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