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Introduction — where is the challenge?




Decision problem

m There is an objective or objectives to be attained

m There are many alternative ways for attaining the objective(s) - they
consititute a set of actions A (alternatives, solutions, objects, acts, ...)

m Questions with respect to set A:

P, : How to choose the best action ?
P; : How to classify actions into pre-defined decision classes ?

P, : How to order actions from the best to the worst ?



A

Decision problem

Chosen subset A’

A\A’ of actions

of best action
Rejected su bse

A Class 1

Class 2

XX

Class p

Partial or complete ranking of actions

XXXX
XX

XXX
XXX

Class1 ~Class 2>~ ... - Class p




Coping with multiple dimensions in Decision Aiding

Decision problems P, Py, P, involve vector evaluations of actions

coming from:
= multiple decision makers (voters, group decision)
= multiple evaluation criteria (multiple objectives)

s multiple possible states of the world that imply multiple
consequences of the actions (probabilities of outcomes)

S. Greco, M. Ehrgott, J. Figueira (eds.), Multiple Criteria Decision Analysis:
State of the Art Surveys. 2nd edition, OR & MS 233, Springer, New York, 2016

S. Greco, M. Ehrgott, J. Figueira (eds.), Trends in Multiple Criteria Decision Analysis.
Springer, New York, 2010



Multi-dimensional decision problems

Social Choice Multiple Criteria | Decision under Risk
(Group Decision) | Decision Aiding and Uncertainty
Element of set A Candidate Action Act
' ' Probabilit
DU Voter Criterion y

' f an m
evaluation space of an outcome

Objective Dominance Dominance Stochastic
information about

comparison of
elements from A

relation relation dominance relation

» The only objective information one can draw from the statement

of a multi-dimensional decision problem is the dominance relation
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Enriching dominance relation — preference modeling/learning

Dominance relation is too poor - it leaves many actions non-comparable

One can ,enrich” the dominance relation, using preference information
elicited from the DM

Preference information is an input to learn/build a preference model

that aggregates the vector evaluations of actions

The preference model induces a preference relation in set A, richer than

the dominance relation (the elements of A become more comparable)

A properexploitation of the preference relation in A leads

to a recommendation in terms of choice, classification or ranking

In this talk, we will consider multiple criteria ranking
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Aggregation of multiple criteria evaluations — preference models

m Three families of preference modeling (aggregation) methods:

= Multiple Attribute Utility Theory (MAUT) using a value function,
e.g., U(@) = 27:1 w;g;(a), U(a)= Z'.?:lu,-[g,-(a)] , Choquet/Sugeno integral
s Outranking methods using an outranking relation S={~U>="“u>*s}
aSb=,ais at least as good as b”

= Decision rule approach using a set of decision rules

e.g., ,If gla)-r, & gla)-r; & ... g,(a)-r,, then a — Class t or higher”

Af g(a)-7""gi(b) & gia)-7"g,(b) & ... g,(a)-,"P)g,(b), then aSb”

m Decision rule model is the most general of all three

R. Stowinski, S. Greco, B. Matarazzo: Axiomatization of utility, outranking and decision-rule
preference models for multiple-criteria classification problems under partial inconsistency
with the dominance principle, Control & Cybernetics, 31 (2002) no.4, 1005-1035
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Example

m Ranking of countries wrt digital economy (quality of information
and technology infrastructure) (Economist Intelligence Unit in 2010)
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Elicitation of preference information by the Decision Maker (DM)

m Direct or indirect ?

m Direct elicitation of numerical values of model parameters by DMs
demands much of their cognitive effort

P.C.Fishburn (1967): Methods of Estimating Additive Utilities. Management Science, 13(7),
435-453 (listed and classified twenty-four methods of estimating additive utilities)

Value function model Outranking model

substitution rates or shapes

_ _ weights & discrimination thresholds
of marginal value functions

| _» Cfabp 03 s — A=0.T5
-~ ’/ ’ 4+ .
- - - Ve k| ----- \\
PR - P 7 N
-7 / ’ \\
ourlom== " gi(a) : -gi(b)
e >
0 o B, 0 G P v

aSb < Cla, b) = ZC a,b)>

and g;(b)-g;(a )gv,- for all i
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Elicitation of preference information by the Decision Maker (DM)

m Indirect elicitation: through holistic judgments, i.e., decision examples

m Decision aiding based on decision examples is gaining importance

because:
= Decision examples are relatively ,easy” preference information
m Decisions can also be observed without active participation of DMs

m Psychologists confirm that DMs are more confident exercising their
decisions than explaining them (J.G.March 1978; P.Slovic 1977)

= Related paradigms:

s Revealed preference theory in economics (P.Samuelson 1938),
is @ method of analyzing choices made by individuals: preferences
of consumers can be revealed by their purchasing habits

= Learning from examples in AI/ML (knowledge discovery)

m Conclusion: indirect elicitation of preferences is more user-friendly

14



Indirect elicitation of preference information by the DM

[TIME=24, COST=56, RISK=75] Pairwise
— preferences

[TIME=28, COST=67, RISK=25] between
| alternatives
—

characterized
by cardinal
and/or ordinal
features (criteria)

Preference

Learning : >

[MATH=18, PHYS=16, LIT=15] = Class ,MEDIUM” |FSEESIIEELIe)

[MATH=17, PHYS=16, LIT=18] = Class ,,GOOD" examples
Intensity of
A is preferred to Z more than C is preferred to K prefere?\/ce

Alternative F should be among 5% of the best ones | &1 (=l E1ES
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Ordinal regression paradigm (UTA method)

m Ordinal regression paradigm emphasizes the discovery of intentions as
an interpretation of decision examples rather than as position a priori

preference information

n
x=y U(a) = Zui[gi(a)]
Z> W i=1
DM X > W | analyst Preference model
>y - v > compatible
u with preference
- information
>~ u
u >

Apply the preference model on A

E. Jacquet-Lagreze, J. Siskos: Assessing a set of additive utility functions for multicriteria
decision-making, the UTA method. Europ. J. Operational Research, 10 (1982) 151-164
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UTA additive preference model

Marginal value functions u,(g;)

ui(g1) ?
f.-) - - - -
2 The scale of u; is a conjoint interval scale
f__.f' \ whatever the scale of g;

g \ @can be found by LP

A n
27 Z (x)]: the value of action x
- g> i=1
having evaluations g;(x), i=1,...,n
n(Gn) ?
;f Criteria are supposed to be independent

with respect to preferences

~ gn
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Value function reproducing pairwise comparisons is not unique

Compatible value function ranks all countries

while respecting the preference information
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The two rankings are substantially different,
although both reproduce the same preference information
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Robust Ordinal Regression
for value function preference model
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Non-univocal representation - Robust Ordinal Regression - UTASMS

preference information

n
. U(a) = Zui g,(a)]
. o : Xry =1
- Z-W All instances of
° . C: Y:Q\R DM Yy v analyst preference model
. . ° (r_ ze' . :> - .| :> compatible
*\ we U./ Uz with preference
¢ * \x;_f . Z-Uu information

Apply all compatible instances on A

S. Greco, V. Mousseau, R. Stowinski: Ordinal regression revisited: multiple criteria ranking with

a set of additive value functions. European J. Operational Research, 191 (2008) 415-435
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ROR - possible and necessary preference relations

m The possible preference relation: for all alternatives x,y<A,

x>y < U(x) = U(y) for at least one compatible value function

(complete and negatively transitive)

m The necessary preference relation: for all alternatives x,y €A,

x =Ny < U(x) = U(y) for all compatible value functions

(partial preorder)

m When there is no preference information:

necessary relation = dominance relation

x=-Ny = x>-Py,

e, =Nc P

x-Ny or y-Fx

for all x,ycA
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Non-univocal representation - Robust Ordinal Regression - UTASMS

Z/ u
X We

preference information
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Non-univocal representation - Robust Ordinal Regression - UTASMS

additional preference information

—
_’

enriched

necessary ranking
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Recommendation in terms of a necessary ranking - UTAGMS

m Necessary preference relation in the set of countries, obtained by
all additive value functions compatible with preference information
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Robust Ordinal Regression as a constructive learning

m Robust Ordinal Regression works in a loop with incremental
elicitation of preferences — constructive learning

Results are robust, because they take into account
partial preference information

Decision Preference
maker won
Preference
Robustness model
analysis

Set of compatible
preference model

arameters
Necessary and P

possible results
(ranking, sorting)

S. Corrente, S. Greco, M. Kadzinski, R. Stowinski: Robust ordinal regression in preference
learning and ranking. Machine Learning, 93 (2013) 381-422



Checking for the existence of a compatible value function

UTAGMS method

¢" =max g, subjectto:

U@ﬁ>u@ﬁ+gifa*>b*}>

ula*)=ulb*) if a* ~ b’

N —

u,-(x,l< —u,-(x,k‘l)z 0, i=1,...,n, k:1,...,m,-(AR) >EAR

Since U(a) = 27:1 u;(a), the only unknown of this LP problem

are marginal value functions vu;

27



Checking for the existence of a compatible value function

UTAGMS metho

¢" =max g, subjectto:

d

< ™
ula*)zulp*)+e if @ =b" | D

Q
ula*)=ulb*) if a* ~ b’ o
u,-(x,k)—u,-(x,k‘l)zo, i=1,....n, k=1,. ,m,(AR) >EAR
u,(x,Q):O, i=1,...,n
n o
I:Ziu,-(xi '):1 )

R . : :
If E# is feasible and £* > 0, then there exists at least one value function

compatible with the preference information
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Calculating necessary and possible preference relations

m For all pairs of actions a,beA, their performances on criteria
g(a), g/(b) add to m,(AR) characteristic points of marginal value

function u; , i=1,...,n; then EA" becomes E(a,b)
m Consider constraints:

m The necessary and the possible preference relations (LP problems):
ar"b<if EN(a,b) infeasibleor €"(a, b)=maxze, s.t.EV(a,b) is<0

ar'b<if EP(a,b) feasible and €”(a, b) =maxze, s.t.EP(a,b) is>0

29



ROR including information about intensities of preference — GRIP

m GRIP extends the UTASMS method by adopting all features of UTAGMS

and by taking into account additional preference information:

s comprehensive comparisons of intensities of preference between
some pairs of reference actions,

e.g. ,x is preferred to y at least as much as w is preferred to z”

= partial comparisons of intensities of preference between some pairs
of reference actions on particular criteria,
e.g. ,x is preferred to y at least as much as w is preferred to z, on

criterion g,eF”

J. Figueira, S. Greco, R. Stowinski: Building a set of additive value functions representing
a reference preorder and intensities of preference: GRIP method.
European J. Operational Research, 195 (2009) 460-486.
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Checking for the existence of a compatible value function

¢ =max g, subjectto: GRIP method
ula®)z ulp*)+e if a" = b )
ule®)=ulbr) if a ~b <
U(a*)—U(b*)z ulc )—U(d*)+s if (a*,b*)>* (c*,d*) i)
. *

U(a*)—U(b*):U(c*)—U(d*) if (a*,b*)~* (c*,d*) ez: &
o) ulo)s e )l )ee it 66t ), i=tn | B (EE
u,-(a*)—u,-(b*):u,-(c*)—u,-(d*) if (a*,b*)n,;f (c*,d*), i=1,...,n
u,-(x,k)—u,-(x,k‘l)z 0O, i=1,...,n, k= 1,...,m,-(AR)
u,(x,o)zo i=1,....m; iu,(x,m’)zl

i=1 _/

R « .
If EZ is feasible and ¢* > 0, then there exists at least one value

function compatible with the preference information
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When the adopted value function fails to represent preferences...

If for a given preference information there is no compatible value

function, the user can:

m identify and eliminate ,troublesome” pieces of preference information

(Mousseau et al. 2003),

m continue to use ,not completely compatible” set of value functions

with an acceptable approximation error

m  augment the complexity of the value function, i.e., pass from
additive value function to Choquet integral or augmented additive

value function taking into account interactions between criteria

S. Greco, V. Mousseau, R. Stowinski: UTAGMS—-INT: robust ordinal regression of value functions
handling interacting criteria. EJOR, 239 (2014) 711-730.
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Representative instance of the preference model
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One can also work with a ,representative” value function

It may be desirable to have @
a total order and scores [ I |
. Norway Denmark
of actions : B i
. . France Ireland Germany UK
The idea is to select among [ J ) ]
compatible value functions | [ mata ]
. T m j
that one which better Turkey [Slovakia [ Poland ] ! France vs. Ireland 1
L . r 1 i___Netherlands vs. UK 7 |
highlights the necessary ranking,
i.e., maximizes the difference 1 1 §
. Ukraine Russia Kazakh.
of values for pairs (a, b), such Pussia |
that a =N b while not(b =N a)

As secondary objective, we minimize the difference of values for
pairs (a, b) for which no necessary relation holds, i.e., such that
not(a =N b) and not(b =N a)

M. Kadzinski, S. Greco, R. Stowinski. Selection of a representative value function in robust

multiple criteria ranking and choice. EJOR, 217 (2012) 541-553
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One can also work with a ,representative” value function

m Reflects a reasonable compromise between all possible outcomes

= Highlights the most stable parts of the ranking

MAL
UKR RUS TUR SVK IRE NOR DEN »one for all, all for one”
AZE KAZ BUL POL GER FRA UK NED SWE UR representative
I i } } } } } i : > instance
0.00 0.14 0.29 0.43 057 064 0.71 0.86 1.00
.- connectivity business environment
0,2 0.5

2 0,16 1 0.4 1

0,121 031

T 0,08 1 /_I—‘ . 027

c

o 0,047 0.11

E D'-. T T T - T U'_.

95 35 45 55 65 75 85

compatible instances
of the preference model
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Extreme ranking analysis
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Extreme ranking analysis

m Collate each action with all the remaining actions jointly

m Compute the highest and the lowest ranks and scores

the highest P*(a) rank P:(a) the lowest
[_Poland | assume that a is ranked L_Sweden |

Sweden ) | in the top in the bottom ~ LNetherlan |
UK
[ Netherlan ] identify minimal subset of alternatives that are simultaneously [ N ]
orway
UK not worse than a not better than a
[ Norway ] i.e., solve the following MILP problems LGermany |
Malta
[ Germany | Minimize: L2 = Z v Minimize : fP%° = Z v [ ]
CmaR T e aay b 7 Jmin bEAay P Ireland_)
[ Malita Ula) =UWb)—M -vy, for all bE A\{a} Ub)>U(a)-M -v, Turkey
[ Ireland | E(AR) E(AR)
Turkey
read off the extreme ranks Kazakh.
, UKraine
Kazakh. P*(a)= [P +1 P.(a) = |A| - £

M. Kadzinski, S. Greco, R. Stowinski: Extreme ranking analysis in robust ordinal regression.
OMEGA, 40 (2012) 488-501




Extreme ranking analysis

Narrow ranges (Bulgaria) vs. wide ranges (UK)
Interactive specification of new pairwise comparisons,
e.g., (UK, Ireland), (Poland, Slovakia)

Choice of the best actions, e.g., BEST = {acA: P*(a)=1}

. N N R NN N R RN R NN RN M RN R N N RN EE N EE N RN B MM RN RN RN A E A Ewmy

c Sweden J
o &
i)
o - .
§ Denmark
O L. "
U
S - “
Q UK
LC) )
() ~—
| - r ™)
Q Malta
Q . S
| -
a
-* France
N
A

Q) -
Bulgaria

Netherlan

L.

.

Denmark

-

.

Norway

A

UK

France

Malta

Ireland

e

b

.‘

00 - 00
00 - 05

Germany

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
. I
1
Bﬂ[ Russia ]mm l
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

80 - 0D
200 - 0D

o0 - @0

00 (- O
OE (- ]
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Stochastic ordinal regression
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Stochastic Multiobjective Acceptability Analysis & ROR = SOR

= When the necessary preference relation =N is poor, it leaves many
pairs of alternatives incomparable, i.e., a-*b and b-Fa

= The number of compatible value functions constrained by available
preference information is infinite

m One can sample these compatible value functions within the constraints
and check the frequency with which:

m a-b - pairwise winning index p(a,b),
m a gets position j in the ranking - rank acceptability index b’,

m The sampling is performed using the Hit and Run algorithm (Smith 1984)
(Monte Carlo simulation)
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Stochastic Multiobjective Acceptability Analysis & ROR — SOR

necessary preference relation extreme ranks
? b P'(a)=1 P.(a)=3

@ >

J
—_— 0.2 S
=0
08 015

pairwise winning indices rank acceptability indices

a |

M. Kadzinski, T. Tervonen, Stochastic ordinal regression for multiple criteria sorting,
Decision Support Systems, 55(1), 55-66, 2013

S. Corrente, S. Greco, M. Kadzinski, R. Stowinski: Inducing probability distributions on
the set of value functions by Subjective Stochastic Ordinal Regression. Knowledge

Based Systems, 112 (2016) 26-36



Preference information vs. model complexity

Many compatible value functions

S Possibly not fully

= compatible model -
g Fully specified model
:c:> 1. Discard some preference

j= information

) 2. Find model with minimal

— error

C

Q

| -

Q

(.

Q

| -

o

1. Pick “representative” value function
2. Consider all compatible
value functions (ROR)

Vv

Model complexity
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Model complexity vs. over-fitting

Fully specified model is exposed to the risk of over-fitting
and may be sensitive to noise

To ensure a better generalization performance, it is reasonable
to learn a preference model in a regularization framework

Find model U by minimizing the regularized loss function:
n

miqri QU+ ¢ ) LU, y:)

Ue
1=1

where Q(U) is controlling the model complexity (structural risk),
and [(U(x;),y;) is a loss function measuring the deviation between
the actual result y; and the estimated result U(x;) for any sample (x;,y; )

(empirical risk ); C is a trade-off constant
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Model complexity vs. over-fitting

m E.g., for additive value function U composed of piecewise-linear
marginal value functions (mvf):

= model complexity Q(U) is a “smoothness” of mvf
(closeness to linearity),

m loss function I(U(x;),y; ) is a value gap é(a, b) that satisfies
the implication: a > b = U(a) > U(b) — é(a, b)

m A trade-off between model’s complexity and its fitting ability is
achieved through quadratic optimization

m=  Non-monotonic criteria (marginal value functions) can be considered

J. Liu, X. Liao, M. Kadzinnski, R. Stowinski: Preference disaggregation within the regularization
framework for sorting problems with multiple potentially non-monotonic criteria. EJOR,
276 (2019) 1071-1089
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Robust Ordinal Regression
for outranking relation preference model
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The need for an incomplete and intransitive preference structure

m Value function model is a complete and transitive preference relation
with a compensatory logic

= In many real-life decision situations it is reasonable to consider:

= Incomparability between alternatives (the available information
does not permit to compare pairwise all alternatives)

= Intransitive indifferences (Luce’s tea cup paradox) and
intransitive preferences (Condorcet paradox)

= Non-compensatory multicriteria aggregation (what price reduction
would you require for a reduction of your car safety by one star?)

m Outranking methods, such as ELECTRE, PROMETHEE, MAPPAC and
PRAGMA, answer these needs in Multiple Criteria Decision Aiding

J.R. Figueira, S. Greco, R. Stowinski, B. Roy: An overview of ELECTRE methods and their
recent extensions. Journal of Multi-Criteria Decision Analysis, 20 (2013) 61-85
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Robust Ordinal Regression approach for outranking methods

= Outranking relation S groups three basic preference relations: ~, >%, >°

strict weak indiff weak strict
preference |preference! MAITTErENCE 5 afarence! preference

gain-type

s : wh N | wa ! s
a-b : a-"b ! a~b | b-*a : b-sa preferece

gia)-pb) a(a)-qb) 943 g(a)+g(a) gia)+pi(a)

a.(b)

asSb reads ,alternative a is at least as good as alternative b”
asSb A bSa < a~b (indifference)
asSb A non(bSa) < a-"b v a-*b (large preference)
non(aSb) A non(bSa) < a?b (incomparability)

m S is an incomplete and intransitive relation on set of actions A,
constructed via concordance and discordance tests (ELECTRE, Roy 1985)
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Robust Ordinal Regression approach for outranking methods

m Concordance test: checks if the coalition of criteria concordant with
the hypothesis aSb is strong enough:

a,be A, w; are weights of criteria

P, 9 0 g/(@)-gi(b)
m Concordance test is positive if: C(a,b)>\ ,
where Ae[0.5, 1] is a cutting level (concordance threshold)

m No compensation between criteria because the weights are not
multiplied by performances (weight w; is a voting power of g;)
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Robust Ordinal Regression approach for outranking methods

m Discordance test: checks if among criteria discordant with the
hypothesis aSb there is a strong opposition against aSb:

e gi(b) - gi(a) >v; (for gain-type criterion)
e gi(a) - g/(b) >v; (for cost-type criterion)

m Conclusion: asSb is true if and only if C(a,b)>1 and there is no criterion
strongly opposed (making veto) to the hypothesis

m For each couple (a,b)eAxA, one obtains relation S: true (1) or false (0)

S|la|b|c|d]|e
al|l1|{0f|1(|1]1
b|(1|1(1|1]0
c|0|0O|J1]|]0(1 I—>
d|{0|0|0]|1]0O
e|0|0|1]|0]1

89



Robust Ordinal Regression approach for outranking methods

= Assuming 27:1 w; =1, we have C(a,b)= 27:1 w,Ci(a,b)=>""  ¥(a,b)

i=1
where ¥;(a, b) is a non-decreasing function of g,(a)-g,(b)

0 : >
0 gi(a)-gi(b)
%(ﬁi! af)
0 : : : >
-Pi -g; 0 gi(a)-gi(b)

where o, are, respectively, the worst and the best possible
performance on criterion g;, i=1,...,n
90



Robust Ordinal Regression approach for outranking methods

m Preference information provided by the DM (ELECTREGKMS):

aSb or asc<b, for a,becARcC A

[g.., ] - the range of indifference threshold allowed by the DM

[pi., pi*] - the range of preference threshold allowed by the DM

S. Greco, M. Kadzinski, V. Mousseau, R. Stowinski: ELECTREGKMS: Robust ordinal regression
for outranking methods. EJOR, 214 (2011) 118-135
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Robust Ordinal Regression approach for outranking methods

m Compatible outranking model is a set of marginal concordance

functions ¥(a,b), cutting levels 2, indifference g;, preference p,,

and veto thresholds v, i=1,...,n, reproducing the DM’s preference

information concerning pairs (a,b) e ARxAR

Fi(a,b)

Fil ) 17" FEeee [ e S remeeeeaeeeneeananens
: ..'___,,‘.‘..f. .......... JI .....................

T B :
T JUUTC SRR S R —

.--" eetet’ !

e e : :

0 -o' . : : >
-p,i* p,m -q;* -qia* 0 g!(a)_g!(b)
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Robust ordinal regression approach for outranking methods

R
= Ordinal regression (compatibility) constraints EA :

If aSb for (a,b) eARxAR: \

asb
n
=y wila. b)l>\ concordance test (+)
Cla,b)= Y], #i(a, b) | nce
g,-(b)— g,-(a)+ e<v;, i=1,...,n discordance test (+)
J
If aS<b for (a,b) e ARxAR: \
n ascb
Cla,b)=> . ,%la b)+e<i+Mqla,b) concordance test (=)
- or
gi(b)-gi@=v; -8M;(a,b), i=1,...,n v discordance test (-)
M;(a,b)e{0,1}, i=0,1,...,n
Z?;o M;(a, b) < n, where § is abiggiven value

0.5<n<1,
v, > p; +g, If [p,-*,p,’-"] was given

vi >g;(b)-gi(@)+e, v;>g;@)-gb)+e if a~p was given, ie{1,..,n}
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Robust Ordinal Regression approach for outranking methods

m  Given a pair of alternatives a,beA, a possibly outranks b:

asPb < ¢ >0

where ¢ =max ¢

subject to:

%

Cla, b) = 27:1 w.(a,b) > 1

Qi(b)— gi(a)+ e<v;, I=1,..

N )

> E°(a,b)

m If & > 0 and constraints EP(a,b) are feasible, then a outranks b

for at least one compatible outranking model (aS”b)
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Robust Ordinal Regression approach for outranking methods

m  Given a pair of alternatives a,beA, a necessarily outranks b:
aS'b < ¢ <0
where ¢ =max e

subject to:
AR \
Cla, b)= 27:1 ¥.(a,b)+e <A+ Mya,b)
gi(b)-gi(a) > v; - 8M;(a,b)
M:(a,b)e{0,1}, i=1,...,n, ZIZOM,-(a, b)<n

> EN(a,b)

m If ¢ < 0 or constraints EN(a,b) are infeasible,
then a outranks b for all compatible outranking models

(aS"b because aSNb is not possible)
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Robust Ordinal Regression approach for outranking methods

m For any pair of alternatives (a,b)cAxA:
aS'b < not(aSc’b), as well as, aS‘*b < not(aS'b),
aS’b < not(aSc"b), as well as, aS‘“b <« not(aS’b)

so, only aS"b and aS*b are to be checked

m Thus, there are 2 ,sources of information” about 4 relations in A:

SN SCN SP, SCP

m Some properties:
aS'b = aS’b
aS'b = not(aS“Vb), as well as, aS“b = not(aS"b)
aSb = aS"b
aSb = not(bS’a)
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Exploitation of outranking relations SV, S¢V, SP, S¢” in set A

m Choice problem:

Kernel of the necessary outranking graph SV

Ranking problem:

Exploitation of the necessary outranking graph including SN and SV
using Net Flow Score procedure for each alternative xeA:

NFS(x) = strength(x) — weakness(x)

SN — positive argument, S¢V — negative argument

(+:-) (+,+)

|
weakness of x ‘ |
\ SCN f

| strength of x
l SCNIII

(--) (=+)
Ranking: complete preorder determined by NFS(x) in A
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Robust Ordinal Regression approach for outranking methods
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NFS ranking

kernel
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4
o (2)(2)E)E ) -

Necessa
S. Greco, M. Kadzinski, V. Mousseau,

R. Stowinski:
regression for outranking methods.

ELECTREGKMS: Robust ordinal
EJOR, 214 (2011) 118-135



Robust Ordinal Regression approach for outranking methods

m Other developments in ROR for outranking methods in ranking:
m PROMETHEEGKS and extreme ranking analysis
m Representative instance of a compatible outranking relations
m Multiple Criteria Hierachy Process (MCHP) for outranking methods

s MCHP for ELECTRE III with interacting criteria and Stochastic ROR

100



Robust Ordinal Regression
for decision rule preference model
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Syntax of monotonic decision rules

ordinal | jf X, >.1ryy @nd X ,=g,r o, and ... Xg=.ro,, then x — class t or better

. ap—qgp" gp’
classifi

cation | jf Xg1=q1lgr @nNd Xo=orep and ... X ,=<.ro,, then x — class t or worse

ap—qp' gp’

choice
ranking if (x >,2"9Y) y) and (x -,,>"92) y) and ... (x >,,>"(9P) y), then xSy

cardinal |
TR if (x =,,="al)y) and (x -,,~"92) y) and ... (x =,,="a@P) y), then xSy
criteria L gl g2 ap

choice
ranking | if | Xg1=girg1 & ¥Yg1=g1l g1 & - Xgp=gplgp 8 Vgp=gpl gpr then xSy
ordinal

. . ' 4 4
criteria | If | Xg1=17g1 & Yg1=g17 g1 |& - Xgp=gplap & Ygp=gpl gpr  thEN XSy

pair of objects x,y evaluated on criterion g,

S.Greco, B.Matarazzo, R.Stowinski: Decision rule approach. Chapter 13 [in]: S.Greco
M.Ehrgott, J.Figueira (eds.), Multiple Criteria Decision Analysis: State of the Art Surveys,
2nd edition, OR & MS 233, Springer, New York, 2016, pp. 497-552
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Dominance-based Rough Set Approach (DRSA)

Classes: A >~ @ - H

A
Cry ... Upward lower appx of class
40
bipolarity at least A
A _ Upward upper appx of class
? ) <" at least A
20F ? ~- Boundary of at least class A & at most class @
O f <l
O I Downward upper appx of class
O o at most @
. G e
------------------------- Downward lower appx of class
0 5 70 Per, at most @

Dominance principle (monotonicity constraints)
If x is at least as good as y with respect to all relevant criteria,
then x should be classified at least as good as y

S.Greco, B.Matarazzo, R.Stowinski: Rough sets theory for multicriteria decision analysis.

European J. of Operational Research, 129 (2001) no.1, 1-47
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Preference modelling by dominance-based decision rules

m Dominance-based ,if..., then...” decision rules are the only aggregation
operators that:

m give account of most complex interactions among criteria,
m are non-compensatory,

m accept ordinal evaluation scales and do not convert ordinal
evalautions into cardinal ones,

m Rules identify values that drive DM’s decisions — each rule is a scenario
of a causal relationship between evaluations on a subset of criteria
and a comprehensive judgment
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Example

Sample of 6 n-d solutions submitted to evaluation of the DM

Reference | f; f> DM
actions
S1 2 14
S5 3 12
S3 5 9
Sa 7 8
Ss 8 Vs
Se 11 6

f—>min
N

14+ w1

I -

|
2 4 6 8 10 12

14 f;—>min

105



Example

Sample of 6 n-d solutions -

Reference | f; f> DM
actions

Sq 2 14 | bad
S 3 12 | bad
S3 5 9 | good
Sy 7 8 | good
St 8 7 | good
Se 11 6 bad

elicitation of preferences by the DM

f—>min
N

14+ wm %1

12+ m

10+

I <

|
2 4 6 8 10 12

14 f;—>min
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Example

Sample of 6 n-d solutions — dominance-based lower approximations

Reference | f; f> DM
actions

Sq 2 14 | bad
S 3 12 | bad
S3 5 9 | good
Sy 7 8 | good
St 8 7 | good
Se 11 6 bad

f—>min
N : 1
144 i-§.= L?wberda ppX
i : o) . a ”
124 nex .
10+ |
T —— @ i
8t S H— !
1 sS4 :
b | i
6l 3 HEC
T Lower appx !
41 ” !
of "gOOd H
L | | | | | | | E | | | | S
O [ [ [ [ [ [ [ I [ [ [ [ <
2 4 6 8 10 12

14 f;—>min
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Example

Sample of 6 n-d solutions — induction of minimal decision rules

f—>min
N :
Reference | f; | f, | DM 14¢ =1 r i
actions 12: ______ _.__5_2_ _________________ _E _____________
S 2 | 14 | bad 1 ;
5 3 | 12 | bad | T - i
i : T2
S3 5 9 |good 8+ >3 S.d:» i
1 ” |
Sa 7 8 | good 6+ 55§ fSG
St 8 7 | good 4: "3
Se 11 | 6 | bad 1
o
2 4 6 8 10 12 14 fi—>min
D r: if f,(s)=12, then s is bad supported by {s;,s,}
ry: if fi(s)=11, then s is bad supported by {sq}

DZ{ ry: if f1(s)<8 & f,(s)<9, then s is good supported by {s3,s4,55}
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Examples of applications
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Example — Prime d’Excellence Scientifique (PES) with jMAF

m  Multiple criteria classification of candidates for PES award:
1. Comprehensive assessment (Global)
2. Publications (Avis 1)
3. Supervision of PhD students (Avis 2)
4. International impact (Avis 3)

5. Administrative responsibility (Avis 4)



Example - Prime d’Excellence Scientifique (PES) with jMAF

Attributes: 5 Examples: 118

No 03 Global (+) B3 Avis 1(+) B3 Avis 2(+) B3 Avis3(+) &3 Avis 4(+) &3 PRIME (+)
7 B A B C B 0
38 B A B B B 1
39 B A A B B 1
40 B A B C B 0
41 B A B B B 1
42 B B B B B 0
43 B A B C B 0
44 B A B B C 0
45 B B B B C 0
46 B A A C B 1
47 B B A B B 0
48 B A A B A 1
49 B B B B B 0
50 B B C C C 0
51 B A B A B 1
52 B A C B € 0




Example - Prime d’Excellence Scientifique (PES) with jMAF

- Union name Accuracy Cardina..

~ Atmost0 0.962 79

| Lower 77

| Upper 80

| Boundary 3

! Example_23

| Example_31

| Example_47

.~ Atleast 0.927 39

| Lower 38

i Upper 41

f Boundary 3
Name Cardinality Content
. Core 4 Avis_1, Avis_2, Avis_3, Avis_4

Reducts 1

Reduct 1 4 Avis_1, Avis_2, Avis_3, Avis 4
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Example - Prime d’Excellence Scientifique (PES) with jMAF

Number of rules: 7

7 PRIME<=0) <= (Avis1<=

ID DECISIONPART1 <= CONDITION 1 CONDITION 2 coNDITION3  certain rules
B PRME>=1) <= (Avis2>=B) & (Avisd>=A)
Bl PRME>=1) <= Avisl>=A) & (Avis2>=A)
(PRIME >=1) <= (Avis.l1>=A) & (Avis3>=B) & (Avis4>=B) 3
4 (PRME<=0) <= (Global<=B) & (Avis4 <=0
B8 (PRIME<=0) <= (Avis1<=B) & (Avis.3<=0)
(PRIME<=0) <= (Avis2<=B) & (Avis3<=C) & (Avis4<=B)

B) & (Avis2<=B) & (Avis4<=B)

El Console T Reducts of PES_RS _var5.isf

%y Monotonic Unions

wls Statistics of PES_RS_var5.rules &2

Rule type: CERTAIN Usage type: AT LEAST Characteristic class: 1

NegativeCoverage: @
InconsistencyMeasure: 0

f-ConfirmationMeasure: 1
A-ConfirmationMeasure: 0.63

Z-ConfirmationMeasure: 1

Support: 28

SupportingExamples: 1,2,3,45,6,78,9,10,11, 12,13, 14, 15, 16, 17, 18, 20, 22, 26, 30, 38, 39, 41, 48,51, 65
Strength: 0.237

Confidence: 1

CoverageFactor: 0.718

Coverage: 28

CoveredExamples: 1,23,4,56,78,910,11, 12,13, 14, 15, 16, 17, 18, 20, 22, 26, 30, 38, 39, 41, 48, 51, 65
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Example - Prime d’Excellence Scientifique (PES) with jMAF

ID DECISION PART1 <= CONDITION 1 CONDITION 2 CONDITION 3 possible rules
8  (PRIME>=1) <= (Avis2>=B) & (Avisd>=A)
Eg ......... (PRIME >=1) <= (Avis2>=A) & (Avis 3 >=B) 3
10 (PRIME >=1) e e e
11 (PRIME >=1) <= | Avis Ts=A) | B |(Avit3==B) [& |AvisA>=B)
12 (PRIME <=0) <= (Global <=B) & (Avis.4 <= ()
13 (PRIME <=0) <= (Global <=C) & (Avis.3 <= ()
14 (PRIME <= 0) <= (Avis.1<=B) & (Avis4 <=B)
15 (PRIME <= 0) <= (Avis2<=B) & (Avis3<=C) & (Avis.4 <=B)

El Console I 1 Reducts of PES_RS_varS.ist 4n Monotonic Unions \d- Statistics of PES_RS_var5.rules &2

Rule type: POSSIBLE Usage type: AT LEAST Characteristic class: 1

Support: 24

SupportingExamples: 1,3,4,7,8,9 10, 11,12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 28, 30, 33, 39, 48, 81
Strength: 0.203

Confidence: 0.923

CoverageFactor: 0.615

Coverage: 26

CoveredExamples: 1,3,4,78,910, 11, 12,13, 14,15, 16, 17, 18, 19, 20, 23, 28, 30, 31, 33, 39, 47,48, 81
NegativeCoverage: @

NegativeCoveredExamples: 31, 47

InconsistencyMeasure: 0.025

f-ConfirmationMeasure:  0.921

A-ConfirmationMeasure: 0.507

Z-ConfirmationMeasure:  0.885




Mobile Emergency Triage System - MET System

= MET - Mobile Emergency Triage

e Facilitates triage disposition for presentations of
acute pain (abdominal and scrotal pain, hip pain)

e Supports triage decision with or without
complete clinical information

e Provides mobile support through handheld
devices

e http://www.mobiledss.uottawa.ca

W. Michalowski, University of Ottawa

K. Farion, Children’s Hospital of Eastern Ontario

Sz. Wilk, R. Stowinski, Poznan University of Technology




: : - Children’s Hospital of Eastern Ontario
Trial Location C* - Centre hospitalier pour enfants de I'est de 'Ontario

m Total pediatric population
>400,000

55,000 patient visits in the
ER per year

3 pediatric general surgeons
(supported by emergency
physicians and residents)
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Triage Process

Emergency Room (ER) Hospital/Clinic
I Resuscitation Immediate
II  Emergent < 15 min. Observation/Clinic
................... Observation
III  Urgent < 30 min.
IV  Less Urgent <1 hour
Vv Non Urgent < 2 hours
Prioritizati Di iti E inati -
rioricization ~ iIsposition ~ Xamination
(Triage nurse) - (ED Physician) - (Specialist) Surgery
Consult -
\ 4
............. decccech Discharge
Discharge
Triage Diagnosis and treatment
Management
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Decision Rules (examples)

m If (Age < 5 years) and (PainSite = lower_abdomen)
and (RebTend = yes) and (4 < WBC < 12)
then (Triage = discharge)

m If (PainDur > 7 days) and (PainSite = lower_abdomen)
and (37 < Tempr < 39) and (TendSite = lower_abdomen)
then (Triage = observation)

m If (Sex = male) and (PainSite = lower_abdomen)
and (PainType = constant) and (RebTend = yes)
and (WBCC > 12) then (Triage = consult)
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System MET-AP

Do o J

i Site of pain: RLO
Durat. of pain: 125 hrs

Type of pain: Intermit,
& Shiftingofpain: Yes

& Previous visit: No

| Site of Pain

[]rLq Lower zbd. [_] Other

-

Do John J

% SiteofpaimBLQ
Durat. of pain: 125 hrs KO}
Type of pain; Intermi
Type of Pain

O Constant
& Interroittent

Hillio, Jane

Sugessted: Discharge (medium)

Discharge: _ medium
Observation: [} neak

Consult: - weak

[ ] Disposition completad




I Site of pain: ELQ
Curat. of pain: 12.5 hts
Twpe of pain: Interrnit.
& Shifting of pain: Yes

i Previous visit: Mo
Yomiting: Yes

Doe, John[E]|
=

MET System - scrotal pain triage

ScrotalPain

=10l x|

Application
Chang, Carl
> History
Site of pain: Both
[]Lett
[ | MNone
[ | Right

Onsetof pain: ] Acute [ | Gradual

Type of pain: |:| Constant
Intermittent

Vomiting: ] vYes [ | Mo

> Physical Examination

Cord palpable: [ ] Abnormal [ ] Mormal

Cremast reflex. [ | ves ] Mo

Lie: | Transverse

Testis tenderness:

[ | UpperPFaole

Entire Testis || Mot Tender
[ | Posterior [ ] Tender Mot Specific

Temperature: Celsius

Swelling: [ | Bath ] Left

[ I Mone [ ] Right

> Tests

WBCIHPF:

|| {lﬁlj Fatients list ||| éD Synchranize |

m Doe, John[5]

Temperature

X |

L

m Doe, John[5]

I Site of pain: RLGQ
Durat. of pain: 12.5 hrs 3
Tvpe of pain: Intermit.

Type of Pain

O Constant
™ Intermittent

v

(D)
(a)(8)
(18

(Del)(0)
Cancel

=
el “°

E

i

Discharge: [l
Observation: |

Consult: [N trong

m Doe, John[5] :

Suggested: Consult {strong) |1| [
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Violinmakers competition

Jury’s assessment

Ranking with respect to:

* volume of sound (X),

 timbre of sound (Y),

+ ease of sound emission,

* equal sound volume of strings (2),
* accuracy of assembly,

* individual qualities

Ranking of violins with respect to X_

Ranking of violins with respect to Y

Ranking of violins with respect to Z

__ . ®. 0. >i

e [

Dominance-
based Rough
Set Approach

Sound recording

The violin’s acoustic data:

= successive sounds of chromatic scale,

= individual sounds played on open strings, G,D,A,E,

Acoustic features:
- power spectrum of chromatic scale sounds,
- wavelets,

brightness, odd/even harmonics content...),
- psychoacoustic features
- cepstral coefficients.

- harmonic based spectral parameters (tristimuli,
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Violinmakers competition — DRSA results

m Reconstructing the expert’s rankings of a set of 23 violins

m Three rankings: volume, timbre and inter-string equality

m Feature space - cepstral coefficients

Ranking Best subset Number | Ranking fit
according to of acoustic features of rules
volume Al4, E13, D12, G16 62 87%
timbre E13, D15, G4, G17, D5 99 92%
inter-string equality D20, D15, A24, D10 64 79%
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Summary and conclusions
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Summary and conclusions

m  Robust Ordinal Regression is a constructive way of learning DM’s preferences.

m It was adapted to three kinds of preference models (value function, outranking
relation, decision rules), multiple-criteria ranking, choice and sorting, group

decision, hierarchical family of criteria, and decision under risk & uncertainty.

L Bernard Roy (1934-2017): ,MCDA must be based
: - on models that are co-constructed through
interaction with the decision maker.

The co-constructed model must be a tool for

looking deeper into the subject, exploring,

interpreting, debating and even arguing.” (2010)

m  Robust Ordinal Regression goes along with this recommendation,

and as such, it is a representative of the European School of Decision Aiding
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Thank you
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