Optimization by unconventional ant algorithms

Nicolas Zufferey

GSEM – University of Geneva Switzerland

GENEVA SCHOOL OF ECONOMICS AND MANAGEMENT

References (papers)

- D. Schindl, N. Zufferey, Solution Methods for Fuel Supply of Trains, Information Systems and Operational Research 51 (1), 22 – 29, 2014
- N. Zufferey, *Metaheuristics: some Principles for an Efficient Design*, **Computer Technology and Applications** 3 (6), 446 462, 2012
- N. Zufferey, Optimization by Ant Algorithms: Possible Roles for an Individual Ant, **Optimization Letters** 6 (5), 963 973, 2012
- M. Plumettaz, D. Schindl, N. Zufferey, *Ant Local Search and its Efficient Adaptation to Graph Colouring*, **Journal of the Operational Research Society** 61, 819 – 826, 2010

2

4

CHAPTERS

- A. Graph coloring problem
- B. Location-distribution problem in a railway network
- C. Order acceptance and scheduling
- D. Enlargement of the ant paradigm

CHAPTER (A)

Graph Coloring

Part I

Constructive Ant Systems

Ant = constructive heuristic

5

(Dorigo, 1992)

How to build a solution s_i with ant i?

At each step: add an element to the current partial solution

Each decision (or move) m is based on:

- Greedy force GF(m): short term profit
- Trail Tr(m): history of the search collaboration between ants 7

Constructive Ant System

While a time limit is not reached, do:

For i = 1 to N, do:
(1) build a solution with ant i
(2) let s_i be the resulting solution

Update the trails:

- by the use of a subset of $\{s_1^{}\,,\,...,\,s_N^{}\,\}$

Updating the trail system

6

8

(at the end of each generation)

 $Tr(m) = \rho Tr(m) + \Delta Tr(m)$

- $\rho \in [0, 1[$ evaporation coefficient
- ΔTr(m) reinforcement term

 $\Delta Tr(m) = \sum_{k \in A} Tr_k(m)$

• A = **all** the ants of the current generation **best** ants of the current generation

Selection of a move

- Compute the probability of each move m
- Normalize GF and Tr
- Tune parameters α and β

 $p_k(m) = \frac{GF(m)^{\alpha} \cdot Tr(m)^{\beta}}{\sum_{m' \in M_k(adm)} GF(m')^{\alpha} \cdot Tr(m')^{\beta}}$

CAS for graph coloring Costa and Hertz (1997)

- ANT-DSAT algorithm
- Role of each ant: constructive heuristic (select a vertex + assign a color)
- **Trail system**: matrix Tr(x,y), proportional to:
 - the <u>number of times</u> vertices x and y have the same color in the solutions provided by the ants
 - the <u>quality</u> of the solutions where c(x) = c(y) ¹¹

Graph Coloring Problem (GCP)

- k-coloring
- give a color c(x) to each vertex x where $c(x) \in \{1, ..., k\}$
- conflict
- GCP

9

if c(x) = c(y) and x linked to y
find a conflict-free k-coloring with
the smallest possible k

10

Part II

Ant Decision Systems

Ant Decision System

Generalization of (Hertz & Zufferey, 2006)

Initialization:

• Generate an initial solution s

While a time limit is not reached, do:

(1) Some ants modify the solution s(let D be the set of associated decisions)

13

(2) Update the trails by the use of D

ADS for k-GCP

(Hertz & Zufferey, 2006)

- Role of each ant: <u>contribute</u> to give a color to a vertex
- Fixed k strategy (conflicts)
- Associate
 - a color in $\{1, ..., k\}$ with each ant
 - k ants to each vertex
- Initial distribution of the ants

 put one ant of each color on each vertex

14

 Move: change the distribution of the ants
 sequentially exchange the position of <u>two</u> ants of different colors, which are located on two vertices x and y

Coloring procedure: at each step

- (1) Select a non colored vertex x
- (2) Assign color c to vertex x:
 - c must be represented on x by at least one ant of color c
 - break ties with c minimizing the number of conflicts
 - break ties with c which is the most represented on x
 - break ties randomly

Goal of an iteration: remove a conflict

Greedy forces & Trails

Part III

Ant Local Search

Ant Local Search (Plumettaz, Schindl & Zufferey, 2010)

While a time limit is not reached, do:

For i = 1 to N, do:

- (1) apply the local search associated with ant i
- (2) let s_i be the resulting solution

Update the trails:

- by the use of a subset of $\{s_1^{}\,,\,...,\,s_N^{}\,\}$

Tabu search (Glover, 1986)

- Start from an initial solution s
- A neighbor solution s' is generated from the current solution s by performing a move
- A **tabu list** is used to forbid the reverse of a recently performed move
- At each iteration, go to the **best non tabu** solution

19

18

Tabu search for k-GCP (Bloechliger & Zufferey, 2008)	Tabu search for k-GCP (Bloechliger & Zufferey, 2008)
 Solution space: legal partial k-coloring s (C₁, C₂,, C_k; OUT) 	Move m = (v, C _i)
C _i set of vertices with color i (conflict free)	move a vertex v from OUT to C _i
OUT set of uncolored vertices	put in OUT every vertex of C _i adjacent to v
	22
ALS for k-GCP: greedy force	ALS for k-GCP: trail system
move m = (v, C _i)	Based on "Friendship" between pairs { x, y } of vertices
GF(m): number of vertices in C _i that will be uncolored by v	$Fs(x, y) = C_i ^2 \text{ if } x, y \in C_i \text{ (same color)}$ (0 otherwise)

Part IV

Results

Compared methods

DSAT (Brélaz, 1979)

· constructive method with restarts

CAS (Costa & Hertz, 1997)

- each ant is a DSAT-algorithm with a trail system
- trail(x, y) indicates if it is a good idea to have color(x) = color(y)

ADS (Hertz & Zufferey, 2006)

• guided DSAT at each iteration

ALS (Plumettaz, Schindl & Zufferey, 2010)

- each ant is a tabu search like (Bloechliger & Zufferey, 2008)
- trail(x, y) indicates if it is a good idea to have color(x) = color(y)

Benchmark graphs

(time limit = 1 hour)

25

Graph	n	density	ОРТ	BEST	DSAT	CAS	ADS	ALS
DSJC1000.1	1000	0.1	?	20	25	29	25	20
DSJC1000.5	1000	0.5	?	83	112	122	104	86
DSJC1000.9	1000	0.9	?	224	293	313	255	225
DSJC500.1	500	0.1	?	12	15	17	15	12
DSJC500.5	500	0.5	?	48	62	68	56	48
DSJC500.9	500	0.9	?	126	158	167	135	127
DSJR500.1c	500	0.97	?	85	87	97	88	85
DSJR500.5	500	0.47	?	122	129	136	130	125
flat1000_50_0	1000	0.49	50	50	111	120	101	50
flat1000_60_0	1000	0.49	60	60	111	121	102	60
flat1000_76_0	1000	0.49	76	82	111	120	103	85
flat300_28_0	300	0.48	28	28	39	43	36	29
le450_15c	450	0.17	15	15	23	28	18	15
le450_15d	450	0.17	15	15	23	28	18	15
le450_25c	450	0.17	25	25	28	33	29	26
le450_25d	450	0.17	25	25	28	33	29	26

Conclusions

• <u>Ranking</u> CAS < DSAT < ADS < ALS ≈ BEST

- <u>DSAT > CAS</u> the way to <u>select a decision</u> in CAS is cumbersome, which lead to a slow method
- <u>ADS > CAS</u> an ant as a <u>decision helper</u> could be better than an ant as a <u>constructive</u> heuristic
- <u>ALS ≈ BEST</u> an ant as a local search leads to the best results

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>
Motivation After the 2010 INFORMS optimization contest	Two type of decisions • Choose the number of trucks contracted at each yard → truck assignment problem → HEURISTICS

• Determine the <u>refueling plan</u> of each locomotive (i.e. the quantity of fuel that must be dispensed into each locomotive at every yard)

Constraints

- The capacity of the tank of each locomotive is limited
- The maximum amount of fuel a <u>truck</u> can provide the same day is limited
- It is forbidden to run out of fuel
- A locomotive cannot be refueled at its destination yard
- There is a maximum number of times (which is two) a train can stop to be refueled (excluding the origin)

Costs

- Weekly operating cost of each fueling truck
- Fuel price per gallon associated with each yard

(which can vary from yard to yard because of the differences in distribution, marketing costs and other factors)

34

• Fixed cost associated with each refueling

A train schedule

Train	Yards	Sequence	Day of Journey	Station Type
t ₁	y ₁	1	1	Origin
	y ₂	2	1	Intermediate
	y ₃	3	1	Intermediate
	y_4	4	1	Destination
t ₂	y_4	1	1	Origin
	y ₂	2	1	Intermediate
	У ₁	3	1	Destination

Illustration: beginning of the solution

		Locom	otive z	1	_	Locome	otive z ₂	2
Stop No.	Yard	Station	Day	Gallons	Yard	Station	Day	Gallons
1	У ₁	Or.	1	0	У ₄	Or.	1	0
2	У ₂	Int.	1	1,870	У ₂	Int.	1	0
3	У ₃	Int.	1	0	У ₁	Or.	2	0
4	y ₄	Or.	2	0	У ₂	Int.	2	0
5	y ₂	Int.	2	0	y ₃	Int.	2	0
6	У ₁	Or.	3	0	У ₄	Or.	3	0
7	y ₂	Int.	3	4,500	У ₂	Int.	3	4,500
8	У ₃	Int.	3	0	У ₁	Or.	4	0
9	y ₄	Or.	4	0	У ₂	Int.	4	0
10	y ₂	Int.	4	0	У ₃	Int.	4	0
11	У ₁	Or.	5	0	У ₄	Or.	5	0
12	y ₂	Int.	5	0	У ₂	Int.	5	0
13	У ₃	Int.	5	0	У ₁	Or.	6	0
14	У ₄	Or.	6	0	y ₂	Int.	6	0
15	y ₂	Int.	6	3,010	У ₃	Int.	6	0
16	У ₁	Or.	7	0	У ₄	Or.	7	0
17	y ₂	Int.	7	0	У ₂	Int.	7	0
18	У ₃	Int.	7	0	У ₁	Or.	8	0
19	У ₄	Or.	8	0	У ₂	Int.	8	4,494
20	y ₂	Int.	8	0	У ₃	Int.	8	0
21	Y ₁	Or.	9	0	Y4	Or.	9	0

Illustration: end of the solution

		Locom	otive	Z ₁		Locomo	otive	z ₂
Stop No.	Yard	Station	Day	Gallons	Yard	Station	Day	Gallons
21	У ₁	Or.	9	0	У ₄	Or.	9	0
22	У ₂	Int.	9	0	У ₂	Int.	9	0
23	У ₃	Int.	9	0	У ₁	Or.	10	0
24	У ₄	Or.	10	0	У ₂	Int.	10	0
25	У ₂	Int.	10	3,752	y ₃	Int.	10	0
26	У ₁	Or.	11	0	У ₄	Or.	11	0
27	У ₂	Int.	11	0	У ₂	Int.	11	386
28	У ₃	Int.	11	0	У ₁	Or.	12	0
29	У ₄	Or.	12	0	У ₂	Int.	12	0
30	У ₂	Int.	12	0	У ₃	Int.	12	0
31	У ₁	Or.	13	0	У ₄	Or.	13	0
32	y ₂	Int.	13	0	У ₂	Int.	13	3,752
33	У ₃	Int.	13	0	У ₁	Or.	14	0
34	У ₄	Or.	14	0	У ₂	Int.	14	0
35	y ₂	Int.	14	0	y ₃	Int.	14	0

Illustration: evaluation of the solution

<u>Fuel costs</u>	80,105.5\$	(26,264 gallons)
<u>Truck costs</u>	8,000\$	(4000 \$/week)
<u>Stop costs</u>	2,000\$	(8 x 250 \$)
Total costs	90 105 5\$	

38

40

Descent local search for TAP

<u>Move</u>

- Add a truck to a yard y
- **Drop** a truck from a yard y
- Evaluation: flow algorithm

One iteration

- Evaluate a random set of 5 add moves
- Evaluate a random set of 5 drop moves

39

• Perform the <u>best</u> of these 10 moves

ALS for the TAP

- Each ant descent local search
- Move (x→s) add/drop a truck on yard x of solution s
- **GF(x→s)** objective function (flow algorithm)
- Trail tr(x,y) proportional to the quality of the solutions with trucks on yards x and y
- **TR(x\rightarrows)** proportional to the tr(x,y)'s with y in s
- <u>Decision</u> perform the best GF move among the 10 best TR moves.

ALS vs Descent

Performance of ALS

- 0.23% above a lower bound.
- Better than the 3rd team of the INFORMS contest.
- ALS is a **flexible** metaheuristics and can be adapted to nonlinear instances, extensions, etc.
- If several trucks from the same company are contracted for the same yard, the company is likely to propose discounted prices for that yard.

CHAPTER (C)

Order acceptance and scheduling

(Thevenin, Zufferey & Widmer, 2013)

Description of the problem

- Schedule n jobs on one machine.
- Setup times/costs.
- Earliness and tardiness penalties (linear/quadratic).

Solution representation

Solutions are **modeled** by:

- a sequence of jobs: 1-2-3-4
- a rejected set: { 5, 6 }

Timing algorithm

- Compute the completion time of each job
- With regular cost functions: ASAP rule.
- With **non regular** cost functions: inserting **idle time** can decrease the costs.

CAS

GF(m) = resulting objective function value

Tr(x, y) based on:

- the number of times job x was processed before job y during the search
- the quality of the associated solutions

CAS: selection of a move

CAS $p_k(m) = \frac{GF(m)^{\alpha} \cdot Tr(m)^{\beta}}{\sum_{m' \in M_k(adm)} GF(m')^{\alpha} \cdot Tr(m')^{\beta}}$

CAS-WP

among the **q moves** leading to the best greedy forces, perform the one associated with the **best trail**

→ sequential use of GF and Tr

Tabu search

Joint use of 4 different types of move

Add a job Drop a job Swap two jobs Reinsert a job

While the solution is not feasible, drop the job whose removal leads to the min cost.

- Each ant is a tabu search
- Same definitions for GF and Tr
- Every 20 moves of tabu search, an insertion is made by taking into account the trails (as in CAS-WP)

Results (10 runs, stop after 30n seconds)

n	α	type	Best	Greedy	Tabu	CAS	CAS-WP	ALS	GA
		LL	40878	71.06	19.36	253.99	10.86	7.91	4.01
		LQ	73879	41.31	7.28	155.38	13.17	0.49	0.92
	1	QL	86042	22.64	14.02	110.00	5.90	0.68	0.90
		QQ	144888	9.46	0.84	69.98	8.61	0.73	0.68
		Mix	67057	49.96	11.07	181.00	32.95	5.96	7.08
		LL	9157	298.58	11.25	1074.55	9.42	6.11	4.71
		LQ	6381	208.30	5.80	2090.34	20.13	0.00	0.00
50	2	QL	7673	194.77	0.19	1452.85	45.94	1.05	0.92
		QQ	26424	64.26	9.60	709.82	96.06	10.30	9.53
		Mix	6133	165.96	13.05	2167.45	69.47	13.25	1.68
		LL	67911	43.33	5.42	125.77	7.71	4.77	2.45
		LQ	125170	14.85	9.48	60.93	4.20	0.09	0.20
	0.5	QL	150014	8.03	5.75	41.85	5.15	0.03	0.03
		QQ	235732	8.09	0.00	13.31	0.59	0.00	0.00
		Mix	137559	6.47	0.53	69.29	11.27	0.41	0.30
	Avera	age		80.47	7.58	571.77	22.76	3.45	2.23

CHAPTER (D)

Enlargement of the Ant Paradigm

(Zufferey, 2014)

Part I

What defines an ant algorithm?

Evolutionary algorithm

- A population of N ants
- Each ant is able of **self adaptation** (independently of the other ants)
- The ants are able to collaborate (exchange information)
- At each generation, solutions are provided based on the ants activity
- Output: **best** encountered solution

Two main ingredients

How to select a decision m at time t?

Greedy force GF(m)

- Short term profit
- Also called: visibility, heuristic information

Trail system Tr(m)

- Information obtained from the other ants (history of the search)
- Large value if m was often performed in previous good solutions

Definition of a generation

Ant	Constructive	Decision	Local
	heuristic	helper	search
Generation	Each ant	D decisions	Each ant
	builds a	have been	provides a
	solution	performed	solution
Method	Constructive	Ant Decision	Ant Local
	Ant System	System	Search
	(CAS)	(ADS)	(ALS)

Part II

Selection of a decision

53

54

Most used formula

$$p_k(m) = \frac{GF(m)^{\alpha} \cdot Tr(m)^{\beta}}{\sum_{m' \in M_k(adm)} GF(m')^{\alpha} \cdot Tr(m')^{\beta}}$$

Cumbersome

- Compute the probability of each decision m
- GF and Tr have to be normalized
- Parameters α and β have to be tuned

Observations

- GF and Tr are jointly used
- Often used in CAS and ADS

Part III

Which is the best ant algorithm?

59

Alternative technique

- Select a set D of decisions with the largest greedy force values
- (2) Then, select in **D** the decision with the largest trail value

Observations

- GF and Tr are sequentially used
- The size of **D** is a sensitive parameter
- Used in ALS

Considered problems

- Graph coloring problem (Plumettaz & Schindl & Zufferey, 2010), (Zufferey, 2012)
- Job scheduling with abandon costs (Zufferey, 2012)
- Location-distribution problem in a railway network (Schindl & Zufferey, 2014)
- Order acceptance and scheduling problem (Thevenin & Zufferey & Widmer, 2013)
- Truck loading problem
 (Respen & Zufferey, 2014)

Evaluation of an algorithm

Efficiency quality of the obta	ined results
--------------------------------	--------------

Speed time needed to get good results

Robustness sensitivity to variations in problem characteristics and data quality

- Flexibility ability to take advantage of the problem structure
 - Simplicity ease of adaptation

٠

•

٠

Difficult to design a solution method having a good **overall** performance

61

CAS: performance

CAS

+ Local search techniques

62

 \rightarrow Competitive results

Evaluation of ant algorithms

	CAS	ADS	ALS	TS
Efficiency	-3	-1	+1	0
Speed	-3	-2	-1	0
Robustness	+1	-1	+1	0
Flexibility	0	0	0	0
Simplicity	-1	-2	-1	0
SCORE	-6	-6	0	0